See the course website for policy on collaboration.

1. In class, we computed that S^2 could be covered by two patches U_1 and U_2 parametrized by $P_1 = P_2 = \mathbb{R}^2$. Writing (u_1, v_1) for coordinates on P_1 , (u_2, v_2) for coordinates on P_2 and (x, y, z) for coordinates on S^2 , the parametrizations are

$$f_1(u_1, v_1) = \left(\frac{2u_1}{1 + u_1^2 + v_1^2}, \frac{2v_1}{1 + u_1^2 + v_1^2}, \frac{1 - u_1^2 - v_1^2}{1 + u_1^2 + v_1^2}\right)$$

$$f_2(u_2, v_2) = \left(\frac{2u_2}{1 + u_2^2 + v_2^2}, \frac{2v_2}{1 + u_2^2 + v_2^2}, \frac{-1 + u_2^2 + v_2^2}{1 + u_2^2 + v_2^2}\right).$$

with transition function

$$(f_2^{-1} \circ f_1)(u_1, v_1) = \left(\frac{u_1}{u_1^2 + v_1^2}, \frac{v_1}{u_1^2 + v_1^2}\right).$$

- (a) In patch P_1 , at the point (u_1, v_1) , let \vec{x} be the vector $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Find the corresponding tangent vector to S^2 at $f_1(u_1, v_1)$, and then the corresponding vector in P_2 .
- (b) Repeat the previous computation for the vector which is $\begin{bmatrix} u_1 \\ v_1 \end{bmatrix}$ at the point (u_1, v_1) of P_1 .

(c) The figures below sketch the vector fields on P_1 in the previous two parts. Sketch the corresponding vector fields on P_2 :

- (d) On problem set 3, you computed that $\omega = xdy \wedge dz ydx \wedge dz + zdx \wedge dy$ is a rotationally invariant 2-form on S^2 . Compute $f_1^*\omega$.
- 2. In general, second derivatives of functions on manifolds aren't easy to talk about. But they are easy at critical points! This question explains.

Let X be a smooth d-fold and let $g: X \to \mathbb{R}$ be a smooth function. Let $x \in X$ and suppose that $(Dq)_x = 0$.

- (a) Let $\gamma(t)$ be a smooth curve in X (in other words, smooth map $(-\epsilon, \epsilon) \to X$ with $\gamma(0) = x$. Show that $\lim_{t\to 0} \Big(g(\gamma(t)) - g(x)\Big)/t^2$ exists.
- (b) Show that the limit in the previous problem only depends on the vector $\gamma'(0)$ in T_xX .
- (c) Show that $\gamma'(0) \mapsto \lim_{t\to 0} \left(g(\gamma(t)) g(x)\right)/t^2$ is a quadratic form, in the sense of Problem 4 on Math 395 Problem Set 4.

This quadratic form is called the Hessian, and serves as a notion of second derivative which you can define at critical points without any coordinates.

- 3. The Grassmannian, G(d, n), is the set of d-dimensional vector subspaces of \mathbb{R}^n . In this problem, we will put the structure of a smooth manifold on G(d, n).
 - Let X and Y be subspaces of \mathbb{R}^n of dimensions d and n-d with $\mathbb{R}^n=X\oplus Y$ and let $\phi:X\to Y$ be a linear map. Define $\Gamma(\phi)$ (the graph of ϕ) to be $\{x+\phi(x):x\in X\}\subset\mathbb{R}^n$. Define $U(X,Y)\subset G(d,n)$ to be the set of d-planes of the form $\Gamma(\phi)$ for some $\phi:X\to Y$.
 - (a) Explain a bijection $f_{X,Y}: \mathbb{R}^{d(n-d)} \to U(X,Y)$. You'll be using this bijection in the rest of the problem, so choose a reasonable one!
 - (b) Show that, for any two splittings (X_1, Y_1) and (X_2, Y_2) , the set $f_{(X_1, Y_1)}^{-1} \Big(U(X_1, Y_1) \cap U(X_2, Y_2) \Big)$ is open in $\mathbb{R}^{d(n-d)}$.
 - (c) Show that the map $f_{X_2,Y_2}^{-1} \circ f_{X_1,Y_1}$ from $f_{(X_2,Y_2)}^{-1} \Big(U(X_1,Y_1) \cap U(X_2,Y_2) \Big)$ to $f_{(X_2,Y_2)}^{-1} \Big(U(X_1,Y_1) \cap U(X_2,Y_2) \Big)$ is smooth.
 - We can now use the open cover U(X,Y) and the bijections $f_{X,Y}$ to put a topology on G(d,n).
 - (d) Show that G(d, n) is Hausdorff in this topology.
 - (e) Show that G(d, n) is compact. (Hint: Every d-plane has an orthonormal basis.)