EVERY SUBSPACE HAS A BASIS

Let V be a subspace of \mathbb{R}^n . We never actually proved that V has a basis; we only showed that, if V is an image or a kernel of a linear map, then it has one. For example, if we have linear maps $A : \mathbb{R}^m \to \mathbb{R}^n$ and $B : \mathbb{R}^n \to \mathbb{R}^p$, then $\mathrm{Im}(A) \cap \mathrm{Ker}(B)$ is a subspace, but we didn't prove it has a basis. This note corrects that.

Since V is contained in \mathbb{R}^n , there can be no more than n linearly independent vectors in V. Let m be the largest number such that there are m linearly independent vectors in V, and let $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_m$ be a list of such vectors.

We claim that $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_m$ is a basis for V. By definition, the \vec{v}_i are linearly independent, so we must show that they span V.

Consider any \vec{w} in V. Since there are not m+1 linearly independent vectors in V, there must be a linear relation:

$$c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_m \vec{v}_m + b \vec{w} = 0.$$

Since the vectors \vec{v}_i are linearly independent, the scalar b is nonzero. So we have

$$\vec{w} = -\frac{c_1}{b}\vec{v}_1 - \frac{c_2}{b}\vec{v}_2 - \dots - \frac{c_m}{b}\vec{v}_m.$$

This shows that \vec{w} is in the span of the \vec{v}_i , as promised.