KEY FACTS ABOUT EIGENVECTORS

Let A be an n x n matrix. Let f(k) be the characteristic polynomial det(A — k- Id). In this note,
we will establish the following facts:

Big Fact 1. For a real number X, there is a (nonzero) eigenvector of A with eigenvalue X if and
only if f(A) =0.

Big Fact 2. If A has r linearly independent eigenvectors vy, va, ..., v, all with eigenvalue X,
then (k — \)" divides f(k).

Given a number A, the geometric multiplicity of A is defined to be the dimension of the space
of vectors v for which AU = A\U. The algebraic multiplicity is the exponent of £ — X\ which occurs
in the factorization of f(k).

So Big Fact 1 says that the algebraic multiplicity is positive if and only if the geometric multi-
plicity is positive. Big Fact 2 says that algebraic multiplicity is greater than or equal to geometric
multiplicity.

Big Fact 3. Let A1, Ao, ..., A\ be distinct zeroes of f, with vy, U2, ..., U, corresponding eigen-
vectors. Then v1, Vo, ..., U, are linearly independent.

We deduce some consequences about when there is a basis of eigenvectors.

Big Fact 4. If there is a basis of eigenvectors of A, then f(k) factors as (A1 —k)(Aa—k) -+ (A, —k).
If k has such a factorization, and all the \; are distinct, then there is a basis of eigenvectors.

Big Facr 1

For a nonzero vector U, we have Av' = A7 if and only if (A — X -Id)¥ = 0, if and only if ¥/ is in
the kernel of A — X - Id.

So there is a nonzero vector ¥ with Av = Av if and only if the kernel of A — X -1d is nonzero. By
our previous discussion of determinants, this happens precisely when det(A — A -1d) = 0.

Bic Fact 2
Take the linearly independent vectors o7, o, ..., ¥, and find n — r more vectors so that ¥, ¥s,
oy Upy Upg1, - .-, Up is a basis of R™. (I should justify that you can always do this, but I'll gloss

over that.)
For 1 < i <r, we have AvU; = A;. For r +1 < i < n, we can write
n
A’L_)’Z = E Cijﬁj
Jj=1
for some coefficients ¢;;. We can organize these facts into a matrix. For concreteness, we take r = 2
and n = 5.

A €31 €41 Cs1
[ T N A cz2 caz o cn2 [ T N
U1 Uy U3 Uy s €33 €43 cs3 | =A- |V Vo Tz Uy Us
[ T R C34 C44 C54 [ T N

€35 C45 Cs5

The blank entries in the matrix are zero.
Let

|
S= |0 % U U4
|



So our equation above says

A €31 C41 C51
A 32 Ca2 Cx2
S C33 (€43 C53 = AS.

C34 C44 Cb4
C35 C45 Cs5

Since v, Vo, ..., Up, Ups1, ---, Up is & basis, the matrix S is invertible and we can write
A C31 €41 C51
A 32 Ca2 Cx2
S C33 C43 C53 S—t=A.

C34 C44 Cb4
C35 C45 Cs5

So
A €31 €41 C51
A €32 Ca2 C52
det(A — &k -1d) = det(A — kSS™!) = det S c33 cy3 cs3 | —k-Id| St

C34 C44 Cb4
€35 C45 Cs5

A=k €31 cq 51
A=k c32 C42 C52
= (det S) - det c33 — k C43 C53 . (det S_l)
c34  caa—k s
35 cy5  c55—k

The det S and det S~! factors cancel so the characteristic polynomial is

A—k c31 41 C51
A=k 3 C42 C52
det c33 — k C43 C53
c34  cu—k  cma

35 cy5 o555 —k

Using the zeroes in the left r columns, we see that every term of this determinant is divisible by
(AN=Fk)".

BiG Fact 3

The proof of Big Fact 3 is a bit challenging, and I imagine I won’t cover it in class. But it is a
nice result!

Our proof is by induction on r. The base case r = 1 is trivial. To build confidence, let’s also
check r = 2. We have Av; = \v7 and Aty = A\oty. If U5 were proportional to ¥, then A would
stretch both ¢7 and 5 by the same factor. But it stretches 7 by A1 and 75 by Ao, and we said that
A1 # A2. So, in fact, ¥ and U are not proportional after all, which is what we wanted.

Let’s now do the case of larger r. Suppose we already know that o, ¥, ..., ¥;._1 are linearly
independent. Suppose that we have a nontrivial linear relation

c1U1 + c2U2 + -+ - ¢p—1Up—1 + ¢ U = 0. (%)
Multiplying equation (x) by A, we get
1AV + AUy + -+ - cp 1AV, + ¢, AU, =0
or
1AV + Aol + -+ Cr 1 Ap_1Up—1 + AU = 0
Now subtract off A\, times equation (x):
(1 AMU] + caXo¥ + - - Cr 1 A 1Tp—1 + G AU ) — Ay (€101 + €2V + - - Cr—1Up1 + ¢ 0r) = 0

or
Cl()\l — )\7«)171 + CQ()\Q — )\7)172 + -+ Crfl(/\l — )\7;1)’(—)}71 =0. (]L)



Equation (f) is a linear relation among v;, ¥a, ..., U,—1. Our induction assumption was that we
had already showed this couldn’t happen. At this point, we have basically reached a contradiction,
and the rest is just mopping up.

The only way we might not have a contradiction is if all the coefficients in () were zero. In other
words, if c;(A1 — Ap) = ca(Aa — Ap) =+ = ¢—1(A1 — A\r) = 0. Since A, is not equal to any of the
other \’s, this would mean ¢y =cy =--- =c¢._1 = 0.

Plugging into equation (x), we get ¢, ¢, = 0. But 9, is not zero, so this means ¢, = 0. We have
now shown that all the coefficients in equation (x) are 0. In other words, the only linear relation
between the v; is a trivial relation.

Now, we have a contradiction, and the proof is complete.

Bic Fact 4
First, suppose that there is a basis 97, ¥s, ..., U, of eigenvectors. Then, as in the argument for
Big Fact 4, we deduce that
A
I Y N A2 I N
271 172 ’(73 174 275 )\3 =A- 171 172 173 274 175
L A4 o
As
As in that argument, we deduce that
A —k
Ao —k
det(A — k- 1d) = det A3 —k

A —k
As — k
The right hand side is clearly (A} — k)(Aa — k) -+ - (A, — k).

We now make the reverse argument. Suppose that f(k) = (A —k)(A2 — k) --- (A, — k) and that
the A; are distinct. From Big Fact 1, for each \;, there is an eigenvector v;. By Big Fact 3, they
are linearly independent. Since there are n of them, and they are linearly independent, they are a
basis.

SO WHAT IF f HAS REPEATED ROOTS?

If f(k) does factor as (A1 — k)(A2 — k) - -+ (A, — k), but with some repeated A;, then you can’t
predict whether or not A has a basis of eigenvectors until you actually do the computation and see.

Consider
2 1 2 0
=) 2=(0 5):

Then A and B both have characteristic polynomial (2 — k)2. The matrix A only has a one dimen-
sional space of eigenvectors, so we can’t find a basis of eigenvectors for A. For B, every vector is
an eigenvector, so any basis of R? is a basis of eigenvectors.



