
KEY FACTS ABOUT EIGENVECTORS

Let A be an n×n matrix. Let f(k) be the characteristic polynomial det(A−k · Id). In this note,
we will establish the following facts:

Big Fact 1. For a real number λ, there is a (nonzero) eigenvector of A with eigenvalue λ if and
only if f(λ) = 0.

Big Fact 2. If A has r linearly independent eigenvectors v1, v2, . . . , vr, all with eigenvalue λ,
then (k − λ)r divides f(k).

Given a number λ, the geometric multiplicity of λ is defined to be the dimension of the space
of vectors ~v for which A~v = λ~v. The algebraic multiplicity is the exponent of k−λ which occurs
in the factorization of f(k).

So Big Fact 1 says that the algebraic multiplicity is positive if and only if the geometric multi-
plicity is positive. Big Fact 2 says that algebraic multiplicity is greater than or equal to geometric
multiplicity.

Big Fact 3. Let λ1, λ2, . . . , λr be distinct zeroes of f , with ~v1, ~v2, . . . , ~vr corresponding eigen-
vectors. Then ~v1, ~v2, . . . , ~vr are linearly independent.

We deduce some consequences about when there is a basis of eigenvectors.

Big Fact 4. If there is a basis of eigenvectors of A, then f(k) factors as (λ1−k)(λ2−k) · · · (λn−k).
If k has such a factorization, and all the λi are distinct, then there is a basis of eigenvectors.

Big Fact 1

For a nonzero vector ~v, we have A~v = λ~v if and only if (A − λ · Id)~v = 0, if and only if ~v is in
the kernel of A− λ · Id.

So there is a nonzero vector ~v with A~v = λ~v if and only if the kernel of A− λ · Id is nonzero. By
our previous discussion of determinants, this happens precisely when det(A− λ · Id) = 0.

Big Fact 2

Take the linearly independent vectors ~v1, ~v2, . . . , ~vr and find n− r more vectors so that ~v1, ~v2,
. . . , ~vr, ~vr+1, . . . , ~vn is a basis of Rn. (I should justify that you can always do this, but I’ll gloss
over that.)

For 1 ≤ i ≤ r, we have A~vi = λ~vi. For r + 1 ≤ i ≤ n, we can write

A~vi =
n∑

j=1

cij~vj

for some coefficients cij . We can organize these facts into a matrix. For concreteness, we take r = 2
and n = 5.

| | | | |
~v1 ~v2 ~v3 ~v4 ~v5
| | | | |



λ c31 c41 c51

λ c32 c42 c52
c33 c43 c53
c34 c44 c54
c35 c45 c55

 = A ·


| | | | |
~v1 ~v2 ~v3 ~v4 ~v5
| | | | |


The blank entries in the matrix are zero.

Let

S =


| | | | |
~v1 ~v2 ~v3 ~v4 ~v5
| | | | |





So our equation above says

S


λ c31 c41 c51

λ c32 c42 c52
c33 c43 c53
c34 c44 c54
c35 c45 c55

 = AS.

Since ~v1, ~v2, . . . , ~vr, ~vr+1, . . . , ~vn is a basis, the matrix S is invertible and we can write

S


λ c31 c41 c51

λ c32 c42 c52
c33 c43 c53
c34 c44 c54
c35 c45 c55

S−1 = A.

So

det(A− k · Id) = det(A− kSS−1) = det S



λ c31 c41 c51

λ c32 c42 c52
c33 c43 c53
c34 c44 c54
c35 c45 c55

− k · Id
S−1

= (detS) · det


λ− k c31 c41 c51

λ− k c32 c42 c52
c33 − k c43 c53
c34 c44 − k c54
c35 c45 c55 − k

 · (detS−1)

The detS and detS−1 factors cancel so the characteristic polynomial is

det


λ− k c31 c41 c51

λ− k c32 c42 c52
c33 − k c43 c53
c34 c44 − k c54
c35 c45 c55 − k


Using the zeroes in the left r columns, we see that every term of this determinant is divisible by
(λ− k)r.

Big Fact 3

The proof of Big Fact 3 is a bit challenging, and I imagine I won’t cover it in class. But it is a
nice result!

Our proof is by induction on r. The base case r = 1 is trivial. To build confidence, let’s also
check r = 2. We have A~v1 = λ1~v1 and A~v2 = λ2~v2. If ~v1 were proportional to ~v2, then A would
stretch both ~v1 and ~v2 by the same factor. But it stretches ~v1 by λ1 and ~v2 by λ2, and we said that
λ1 6= λ2. So, in fact, ~v1 and ~v are not proportional after all, which is what we wanted.

Let’s now do the case of larger r. Suppose we already know that ~v1, ~v2, . . . , ~vr−1 are linearly
independent. Suppose that we have a nontrivial linear relation

c1~v1 + c2~v2 + · · · cr−1~vr−1 + cr~vr = 0. (∗)
Multiplying equation (∗) by A, we get

c1A~v1 + c2A~v2 + · · · cr−1A~vr−1 + crA~vr = 0

or
c1λ1~v1 + c2λ2~v2 + · · · cr−1λr−1~vr−1 + crλr~vr = 0

Now subtract off λr times equation (∗):
(c1λ1~v1 + c2λ2~v2 + · · · cr−1λr−1~vr−1 + crλr~vr)− λr (c1~v1 + c2~v2 + · · · cr−1~vr−1 + cr~vr) = 0

or
c1(λ1 − λr)~v1 + c2(λ2 − λr)~v2 + · · ·+ cr−1(λ1 − λr−1)~vr−1 = 0. (†)



Equation (†) is a linear relation among ~v1, ~v2, . . . , ~vr−1. Our induction assumption was that we
had already showed this couldn’t happen. At this point, we have basically reached a contradiction,
and the rest is just mopping up.

The only way we might not have a contradiction is if all the coefficients in (†) were zero. In other
words, if c1(λ1 − λr) = c2(λ2 − λr) = · · · = cr−1(λ1 − λr) = 0. Since λr is not equal to any of the
other λ’s, this would mean c1 = c2 = · · · = cr−1 = 0.

Plugging into equation (∗), we get cr~vr = 0. But ~vr is not zero, so this means cr = 0. We have
now shown that all the coefficients in equation (∗) are 0. In other words, the only linear relation
between the ~vi is a trivial relation.

Now, we have a contradiction, and the proof is complete.

Big Fact 4

First, suppose that there is a basis ~v1, ~v2, . . . , ~vn of eigenvectors. Then, as in the argument for
Big Fact 4, we deduce that

| | | | |
~v1 ~v2 ~v3 ~v4 ~v5
| | | | |



λ1

λ2
λ3

λ4
λ5

 = A ·


| | | | |
~v1 ~v2 ~v3 ~v4 ~v5
| | | | |


As in that argument, we deduce that

det(A− k · Id) = det


λ1 − k

λ2 − k
λ3 − k

λ4 − k
λ5 − k

 .

The right hand side is clearly (λ1 − k)(λ2 − k) · · · (λn − k).
We now make the reverse argument. Suppose that f(k) = (λ1 − k)(λ2 − k) · · · (λn − k) and that

the λi are distinct. From Big Fact 1, for each λi, there is an eigenvector ~vi. By Big Fact 3, they
are linearly independent. Since there are n of them, and they are linearly independent, they are a
basis.

So what if f has repeated roots?

If f(k) does factor as (λ1 − k)(λ2 − k) · · · (λn − k), but with some repeated λi, then you can’t
predict whether or not A has a basis of eigenvectors until you actually do the computation and see.
Consider

A =

(
2 1
0 2

)
B =

(
2 0
0 2

)
.

Then A and B both have characteristic polynomial (2− k)2. The matrix A only has a one dimen-
sional space of eigenvectors, so we can’t find a basis of eigenvectors for A. For B, every vector is
an eigenvector, so any basis of R2 is a basis of eigenvectors.


