KEY FACTS ABOUT EIGENVECTORS

Let A be an $n \times n$ matrix. Let f(k) be the characteristic polynomial det $(A - k \cdot \text{Id})$. In this note, we will establish the following facts:

Big Fact 1. For a real number λ , there is a (nonzero) eigenvector of A with eigenvalue λ if and only if $f(\lambda) = 0$.

Big Fact 2. If A has r linearly independent eigenvectors v_1, v_2, \ldots, v_r , all with eigenvalue λ , then $(k - \lambda)^r$ divides f(k).

Given a number λ , the **geometric multiplicity** of λ is defined to be the dimension of the space of vectors \vec{v} for which $A\vec{v} = \lambda \vec{v}$. The **algebraic multiplicity** is the exponent of $k - \lambda$ which occurs in the factorization of f(k).

So Big Fact 1 says that the algebraic multiplicity is positive if and only if the geometric multiplicity is positive. Big Fact 2 says that algebraic multiplicity is greater than or equal to geometric multiplicity.

Big Fact 3. Let $\lambda_1, \lambda_2, \ldots, \lambda_r$ be distinct zeroes of f, with $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_r$ corresponding eigenvectors. Then $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_r$ are linearly independent.

We deduce some consequences about when there is a basis of eigenvectors.

Big Fact 4. If there is a basis of eigenvectors of A, then f(k) factors as $(\lambda_1 - k)(\lambda_2 - k) \cdots (\lambda_n - k)$. If k has such a factorization, and all the λ_i are distinct, then there is a basis of eigenvectors.

BIG FACT 1

For a nonzero vector \vec{v} , we have $A\vec{v} = \lambda\vec{v}$ if and only if $(A - \lambda \cdot Id)\vec{v} = 0$, if and only if \vec{v} is in the kernel of $A - \lambda \cdot Id$.

So there is a nonzero vector \vec{v} with $A\vec{v} = \lambda\vec{v}$ if and only if the kernel of $A - \lambda \cdot Id$ is nonzero. By our previous discussion of determinants, this happens precisely when $det(A - \lambda \cdot Id) = 0$.

BIG FACT 2

Take the linearly independent vectors $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_r$ and find n - r more vectors so that $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_r, \vec{v}_{r+1}, \ldots, \vec{v}_n$ is a basis of \mathbb{R}^n . (I should justify that you can always do this, but I'll gloss over that.)

For $1 \leq i \leq r$, we have $A\vec{v_i} = \lambda \vec{v_i}$. For $r+1 \leq i \leq n$, we can write

$$A\vec{v}_i = \sum_{j=1}^n c_{ij}\vec{v}_j$$

for some coefficients c_{ij} . We can organize these facts into a matrix. For concreteness, we take r = 2 and n = 5.

$$\begin{pmatrix} | & | & | & | \\ \vec{v}_1 & \vec{v}_2 & \vec{v}_3 & \vec{v}_4 & \vec{v}_5 \\ | & | & | & | & | \end{pmatrix} \begin{pmatrix} \lambda & c_{31} & c_{41} & c_{51} \\ \lambda & c_{32} & c_{42} & c_{52} \\ & c_{33} & c_{43} & c_{53} \\ & c_{34} & c_{44} & c_{54} \\ & c_{35} & c_{45} & c_{55} \end{pmatrix} = A \cdot \begin{pmatrix} | & | & | & | & | \\ \vec{v}_1 & \vec{v}_2 & \vec{v}_3 & \vec{v}_4 & \vec{v}_5 \\ | & | & | & | & | \\ & & & & \end{pmatrix}$$

The blank entries in the matrix are zero.

Let

$$S = \begin{pmatrix} | & | & | & | \\ \vec{v}_1 & \vec{v}_2 & \vec{v}_3 & \vec{v}_4 & \vec{v}_5 \\ | & | & | & | & | \end{pmatrix}$$

So our equation above says

$$S\begin{pmatrix}\lambda & c_{31} & c_{41} & c_{51}\\ \lambda & c_{32} & c_{42} & c_{52}\\ & c_{33} & c_{43} & c_{53}\\ & c_{34} & c_{44} & c_{54}\\ & c_{35} & c_{45} & c_{55}\end{pmatrix} = AS$$

Since $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_r, \vec{v}_{r+1}, \ldots, \vec{v}_n$ is a basis, the matrix S is invertible and we can write

$$S\begin{pmatrix}\lambda & c_{31} & c_{41} & c_{51}\\ \lambda & c_{32} & c_{42} & c_{52}\\ & c_{33} & c_{43} & c_{53}\\ & c_{34} & c_{44} & c_{54}\\ & c_{35} & c_{45} & c_{55}\end{pmatrix}S^{-1} = A.$$

 So

$$\det(A - k \cdot \mathrm{Id}) = \det(A - kSS^{-1}) = \det S \begin{pmatrix} \lambda & c_{31} & c_{41} & c_{51} \\ \lambda & c_{32} & c_{42} & c_{52} \\ & c_{33} & c_{43} & c_{53} \\ & c_{34} & c_{44} & c_{54} \\ & c_{35} & c_{45} & c_{55} \end{pmatrix} - k \cdot \mathrm{Id} \\ S^{-1}$$
$$= (\det S) \cdot \det \begin{pmatrix} \lambda - k & c_{31} & c_{41} & c_{51} \\ \lambda - k & c_{32} & c_{42} & c_{52} \\ & c_{33} - k & c_{43} & c_{53} \\ & c_{34} & c_{44} - k & c_{54} \\ & & c_{35} & c_{45} & c_{55} - k \end{pmatrix} \cdot (\det S^{-1})$$

The det S and det S^{-1} factors cancel so the characteristic polynomial is

$$\det \begin{pmatrix} \lambda - k & c_{31} & c_{41} & c_{51} \\ \lambda - k & c_{32} & c_{42} & c_{52} \\ & c_{33} - k & c_{43} & c_{53} \\ & c_{34} & c_{44} - k & c_{54} \\ & & c_{35} & c_{45} & c_{55} - k \end{pmatrix}$$

Using the zeroes in the left r columns, we see that every term of this determinant is divisible by $(\lambda - k)^r$.

BIG FACT 3

The proof of Big Fact 3 is a bit challenging, and I imagine I won't cover it in class. But it is a nice result!

Our proof is by induction on r. The base case r = 1 is trivial. To build confidence, let's also check r = 2. We have $A\vec{v}_1 = \lambda_1\vec{v}_1$ and $A\vec{v}_2 = \lambda_2\vec{v}_2$. If \vec{v}_1 were proportional to \vec{v}_2 , then A would stretch both \vec{v}_1 and \vec{v}_2 by the same factor. But it stretches \vec{v}_1 by λ_1 and \vec{v}_2 by λ_2 , and we said that $\lambda_1 \neq \lambda_2$. So, in fact, \vec{v}_1 and \vec{v} are not proportional after all, which is what we wanted.

Let's now do the case of larger r. Suppose we already know that $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_{r-1}$ are linearly independent. Suppose that we have a nontrivial linear relation

$$c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_{r-1} \vec{v}_{r-1} + c_r \vec{v}_r = 0.$$
 (*)

Multiplying equation (*) by A, we get

$$c_1 A \vec{v}_1 + c_2 A \vec{v}_2 + \dots + c_{r-1} A \vec{v}_{r-1} + c_r A \vec{v}_r = 0$$

or

$$c_1\lambda_1\vec{v}_1 + c_2\lambda_2\vec{v}_2 + \cdots + c_{r-1}\lambda_{r-1}\vec{v}_{r-1} + c_r\lambda_r\vec{v}_r = 0$$

Now subtract off λ_r times equation (*):

$$(c_1\lambda_1\vec{v}_1 + c_2\lambda_2\vec{v}_2 + \cdots + c_{r-1}\lambda_{r-1}\vec{v}_{r-1} + c_r\lambda_r\vec{v}_r) - \lambda_r(c_1\vec{v}_1 + c_2\vec{v}_2 + \cdots + c_{r-1}\vec{v}_{r-1} + c_r\vec{v}_r) = 0$$

$$c_1(\lambda_1 - \lambda_r)\vec{v}_1 + c_2(\lambda_2 - \lambda_r)\vec{v}_2 + \dots + c_{r-1}(\lambda_1 - \lambda_{r-1})\vec{v}_{r-1} = 0.$$
(†)

Equation (†) is a linear relation among $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_{r-1}$. Our induction assumption was that we had already showed this couldn't happen. At this point, we have basically reached a contradiction, and the rest is just mopping up.

The only way we might not have a contradiction is if all the coefficients in (\dagger) were zero. In other words, if $c_1(\lambda_1 - \lambda_r) = c_2(\lambda_2 - \lambda_r) = \cdots = c_{r-1}(\lambda_1 - \lambda_r) = 0$. Since λ_r is not equal to any of the other λ 's, this would mean $c_1 = c_2 = \cdots = c_{r-1} = 0$.

Plugging into equation (*), we get $c_r \vec{v}_r = 0$. But \vec{v}_r is not zero, so this means $c_r = 0$. We have now shown that all the coefficients in equation (*) are 0. In other words, the only linear relation between the \vec{v}_i is a trivial relation.

Now, we have a contradiction, and the proof is complete.

BIG FACT 4

First, suppose that there is a basis $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$ of eigenvectors. Then, as in the argument for Big Fact 4, we deduce that

$$\begin{pmatrix} | & | & | & | \\ \vec{v}_1 & \vec{v}_2 & \vec{v}_3 & \vec{v}_4 & \vec{v}_5 \\ | & | & | & | \\ \end{pmatrix} \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \lambda_3 & & \\ & & & \lambda_4 & \\ & & & & \lambda_5 \end{pmatrix} = A \cdot \begin{pmatrix} | & | & | & | & | \\ \vec{v}_1 & \vec{v}_2 & \vec{v}_3 & \vec{v}_4 & \vec{v}_5 \\ | & | & | & | & | \\ & & & & \end{pmatrix}$$

As in that argument, we deduce that

$$\det(A - k \cdot \mathrm{Id}) = \det \begin{pmatrix} \lambda_1 - k & & & \\ & \lambda_2 - k & & & \\ & & \lambda_3 - k & & \\ & & & \lambda_4 - k & \\ & & & & \lambda_5 - k \end{pmatrix}.$$

The right hand side is clearly $(\lambda_1 - k)(\lambda_2 - k)\cdots(\lambda_n - k)$.

We now make the reverse argument. Suppose that $f(k) = (\lambda_1 - k)(\lambda_2 - k)\cdots(\lambda_n - k)$ and that the λ_i are distinct. From Big Fact 1, for each λ_i , there is an eigenvector \vec{v}_i . By Big Fact 3, they are linearly independent. Since there are *n* of them, and they are linearly independent, they are a basis.

So what if f has repeated roots?

If f(k) does factor as $(\lambda_1 - k)(\lambda_2 - k)\cdots(\lambda_n - k)$, but with some repeated λ_i , then you can't predict whether or not A has a basis of eigenvectors until you actually do the computation and see. Consider

$$A = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix} \quad B = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}.$$

Then A and B both have characteristic polynomial $(2 - k)^2$. The matrix A only has a one dimensional space of eigenvectors, so we can't find a basis of eigenvectors for A. For B, every vector is an eigenvector, so any basis of \mathbb{R}^2 is a basis of eigenvectors.