
MINIMIZATION PROBLEMS WITH LINEAR AND QUADRATIC
FORMS TOGETHER

Let Q be a symmetric matrix. We say that Q is positive definite if ~vTQ~v > 0 for all
nonzero vectors ~v. Recall that a symmetric matrix Q is positive definite if and only if all of
its eigenvalues are nonnegative.

One of the extremely convenient things about a positive definite matrix is that we can
choose a basis in which it is just the standard length-squared form you are used to on Rn.
Specifically, let Q be a positive definite matrix. Let ~v1, . . . , ~vn be an orthonormal eigenbasis
for Q, with eigenvalues λ1, λ2, . . . , λn.

Let S be the matrix whose rows are ~v1, ~v2, . . . , ~vn. As we have discussed several times,
we have
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Note that we can rewrite this as

Q = RTR where R =


√
λ1 √

λ2
. . . √

λn

S =


−
√
λ1~v1 −

−
√
λ2~v2 −

...
...

...
−
√
λn~vn −


So, ~xTQ~x = ~xTRTR~x = (R~x)T (R~x). In other words, if R~x = ~y, then ~xTQ~x = ~yT~y = |y|2.

The matrix R turns the funny quadratic form Q into the length-squared which we have
geometric intuitions for.

In this note, I’ll discuss some cases where I find this a useful trick. All of the problems I
discuss can also be solved in other ways. In particular, those of you who know multivariable
calculus will find all of these problems vulnerable to it.

1. Minimizing a quadratic form plus lower order terms

In high school algebra, you learn how to compute the minimum value of ax2 + bx + c by
completing the square: Writing ax2 + bx+ c = a(x+ b/(2a))2 + c− b2/(4a), we see that the
minimum is c− b2/(4a), and is achieved at x = −b/(2a). All of this is for a positive; if a is
negative then the parabola curves down and there is no minimum value.

The corresponding problem in linear algebra is to minimize ~xTQ~x+~bT~x+ c as a function

of the length n vector ~x. Here Q is an n× n positive definite matrix; ~b is a vector of length
n and c is a scalar.

We make the change of variables ~y = R~x. So

~xTQ~x+~bT~x+ c = ~yT~y +~bTR−1~y + c
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We can complete the square.
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We clean up a little by noticing that R−1(RT )−1 = (RTR)−1 = Q−1.
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So the minimal value is c − 1
4
~bTQ−1~b, generalizing the single variable formula c − 1

4
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The minimum value occurs when ~y = −1
2
(R−1)T~b. In the original coordinates, the minimum

is at
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This is the generalization of the single variable formula −1
2
b/a.

2. Minimizing a quadratic form restricted to linear conditions

Consider a subset of Rn that looks like ~p + V for some subspace d-dimensional V of Rn.
We might want to minimize the function Q on the space ~p + V . Writing V as the image of
some n× d matrix A. Then we want to minimize

(~p+ A~z)TQ(~p+ A~z) = ~zTATQA~z + 2(Q~p)TA~z + ~pTQ~p

as a function of ~z. This is exactly a quadratic function of the sort we discussed above, with

(Q,~b, c) replaced by (ATQA, 2Q~p, ~pTQ~p). But it’s nicer not to go through this.
As before, write Q = RTR. We want to minimize ~xTQ~x subject to ~x = ~p + A~z for some

~z. As before, we make the change of variables ~y = R~x. So we want to minimize |y|2 subject
to ~y = R~p+RA~z. In other words, we want ~y to be the smallest vector on R~p+ Image(RA).
Alternatively, we want ~y− ~p to be the vector on Image(RA) closest to −~p. Writing ~r for the
orthogonal projection of ~r onto Image(RA), we want ~y = ~p+ ~r and ~x = R−1(~p+ ~r).

Often, instead of being given our linear constraint in the form ~x = ~p + A~y, we are given
a collection of inhomogenous linear equations B~x = ~q for some matrix B and vector of
constants ~q. Of course, by row reduction, we can convert equations of the form B~x = ~q into
equations of the form ~p+ A~y. But there is a slicker way.

One more time, put Q = RTR and ~y = R~x. We want to minimize ~y2 subject to BR−1~y = ~q.
The space of ~y such that BR−1~y = ~q is a translate of Ker(BR−1). The smallest vector on the
linear constraint BR−1~y = ~q. will therefore be in a direction perpendicular to Ker(BR−1).
In equations, ~y is in Ker(BR−1)⊥. But we know that Ker(BR−1)⊥ = Image((−1)T ) =
Image((RT )−1BT ). So ~y = (RT )−1BT~z for some ~z. We can find ~z by solving the equation

BR−1(RT )−1BT~z = ~q or, in other words BQ−1BT~z = ~q.

Putting it all together,

~x = R−1~y = R−1(RT )−1BT~z = Q−1BT~z = Q−1BT (BQ−1BT )−1~q.


