
Some key facts about transpose

Let A be an m× n matrix. Then AT is the matrix which switches the rows and columns of A.
For example 1 5 3 4

2 7 0 9
1 3 2 6

T

=


1 2 1
5 7 3
3 0 2
4 9 6


We have the following useful identities:

(AT )T = A (A + B)T = AT + BT (kA)T = kAT

(AB)T = BTAT (AT )−1 = (A−1)T ~v · ~w = ~vT ~w
Transpose Facts 1

A deeper fact is that

Rank(A) = Rank(AT ). Transpose Fact 2

Remember that Rank(B) is dim(Im(B)), and we compute Rank as the number of leading ones in
the row reduced form.

Recall that ~u and ~v are perpendicular if and only if ~u · ~v = 0. The word orthogonal is a
synonym for perpendicular.

If V is a subspace of Rn, then V ⊥ is the set of those vectors in Rn which are perpendicular to
every vector in V . V ⊥ is called the orthogonal complement to V ; I’ll often pronounce it “Vee
perp” for short.

You can (and should!) check that V ⊥ is a subspace of Rn. It is geometrically intuitive that

dimV ⊥ = n− dimV Transpose Fact 3

and that

(V ⊥)⊥ = V. Transpose Fact 4

We will prove both of these facts later in this note.
In this note we will also show that

Ker(A) = Im(AT )⊥ Im(A) = Ker(AT )⊥ Transpose Fact 5

As is often the case in math, the best order to state results is not the best order to prove them.
We will prove these results in reverse order: 5, 4, 3, 2. The identities in the first box are left for
you to check; see Theorem 5.3.9 in your textbook if you need help.

All of these facts do appear in your textbook, but scattered about and sometimes in the problem
sections: Transpose Fact 2 is Exercises 3.3.71 through 3.3.74; Transpose Fact 3 is Theorem 5.1.8;
Transpose Fact 4 is Exercise 5.1.23; Tranpose Fact 5 is Theorem 5.4.1.

The kernel of A is perpindicular to the image of AT .

Observation If ~v1, ~v2, . . . , ~vm span V , then ~u is perpendicular to V if and only if it is perpen-
dicular to ~v1, ~v2, . . . , ~vm.

To see this, notice that if ~u is perpendicular to ~v1, ~v2, . . . , ~vm, and ~v is any other vector in V ,
then we can write ~v = c1~v1 + c2 ~v2 + · · ·+ cm~vm and hence

~u · (c1~v1 + c2~v2 + · · ·+ cm~vm) = c1(~u · ~v1) + c2(~u · ~v2) + · · ·+ cm(~u · ~vm).

We now show that the kernel of A is the orthogonal space to the image of AT and the image of
A is the orthogonal space to the kernel of AT , which is Transpose Fact 5.
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I’ll work through an example which shows all the key points. Take

A =

1 2 3
4 5 6
7 8 9

 .

Note that the following are equivalent:

(1)
(

x
y
z

)
is in the kernel of A.

(2) We have x + 2y + 3z = 0, 4x + 5y + 6z = 0 and 7x + 8y + 9z = 0.

(3)
(

x
y
z

)
is perpendicular to

(
1
2
3

)
,
(

4
5
6

)
and

(
7
8
9

)
.

(4)
(

x
y
z

)
is perpendicular to the span of

(
1
2
3

)
,
(

4
5
6

)
and

(
7
8
9

)
.

(5)
(

x
y
z

)
is perpendicular to the image of

(
1 4 7
2 5 8
3 6 9

)
.

(6)
(

x
y
z

)
is perpendicular to the image of AT .

Going between (3) and (4) is Observation 1.

So we have checked that
(

x
y
z

)
is in the kernel of A if and only if

(
x
y
z

)
is perpendicular to the

image of AT . The argument is just the same for a general matrix.

The complement of the complement is the original space

Let V be any subspace of Rn. We’re going to show that (V ⊥)⊥ = V , just like you would expect
from drawing pictures in three dimensions.

Find a map A with image V . (We actually never proved that you can always do this! Assuming
that every subspace has a basis ~v1, ~v2, . . . , ~vm, take A to be the matrix whose columns are ~vi. I
added a note to the reading column for Sept. 30 on why every subspace has a basis.)

(V ⊥)⊥ =
(

Im(A)⊥
)⊥

=
(
Ker(AT )

)⊥
= Im((AT )T ) = Im(A) = V.

The dimension of the complement is what you expect it to be.

Let V be any subspace of Rn. We’re going to show that dimV ⊥ = n− dimV .
Let P be the orthogonal projection onto V ; this is a map from Rn → Rn. Then Ker(P ) = V ⊥

and Im(P ) = V . By the rank-nullity theorem,

dim(Im(P )) + dim(Ker(P )) = n so dim(V ) + dim(V ⊥) = n as promised.

We’ll talk in class about how to compute P . For the record, here is the most concise formula.
Let ~v1, ~v2, . . . , ~vm be a basis for V and let A be a matrix with columns ~v1, ~v2, . . . , ~vm. So A is an
injective map Rm → Rn with image V . Then

P = A(ATA)−1AT .

This formula raises two questions: Why is ATA invertible? Why does this formula give the orthog-
onal projection? We’ll answer both of these, but maybe you can figure them out first.

Rank of A equals rank of AT

Let A be an m× n matrix. From the rank-nullity theorem,

dim Im(AT ) = m− dim Ker(AT ).

From Transpose Fact 5, Ker(AT ) = Im(A)⊥ and, from Transpose Fact 4, dim Im(A)⊥ = m −
dim Im(A). Putting these together,

dim Im(AT ) = m− (m− dim Im(A)) = dim Im(A).


