
Complex inner products



Let V be a vector space over C. Our notions of bilinear form and

symmetric bilinear form still make sense:

B(~v1 + ~v2, ~w) = B(~v1, ~w) + B(~v2, ~w)

B(~v, ~w1 + ~w2) = B(~v, ~w1) + B(~v, ~w2)

B(c~v, ~w) = B(~v, c~w) = cB(~v, ~w).

B(~v, ~w) = B(~w,~v).
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However, it doesn’t make sense to ask for this form to be positive

definite: If B(~v,~v) > 0 then B(i~v, i~v) = i2B(~v,~v) = −B(~v,~v) < 0.



If we stick with the naive dot product, it is not true that subspaces

over C have orthonormal bases: Every vector in C [ 1i ] has length 0.

And it is not true that symmetric matrices are diagonalizable:[
1 i
i −1

]
has characteristic polynomial x2, but only has 1-dimensional

0-eigenspace.
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We can fix these problems by introducing sesquilinear forms.



Vocabularly interlude: “Sesqui-” is a prefix meaning “one and a

half”, in the same way that “bi-” means “two”.

These forms are linear in their second entry and “halfway linear” in

their first entry.



Sesquilinear forms

Let V be a complex vector space. A sesquilinear form takes an

input two vectors from V and gives as output a complex number

such that:

B(~v1 + ~v2, ~w) = B(~v1, ~w) + B(~v2, ~w)

B(~v, ~w1 + ~w2) = B(~v, ~w1) + B(~v, ~w2)

B(~v, c~w) = cB(~v, ~w) B(c~v, ~w) = cB(~v, ~w).

Here c is the complex conjugate : c1 + c2i = c1 − c2i.

Notice that we now have

B(i~v, i~v) = iiB(~v,~v) = i(−i)B(~v,~v) = B(~v,~v).



What does this look like in matrices? Given an m× n complex

matrix A, we define A† to be the n×m matrix A
T

– we get the

transpose, and we take the complex conjugate of each entry.

A sequilinear form on Cn is given by an n× n complex matrix Q,

with B(~x, ~y) = ~x†Q~y.
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matrix A, we define A† to be the n×m matrix A
T

– we get the

transpose, and we take the complex conjugate of each entry.

A sequilinear form on Cn is given by an n× n complex matrix Q,

with B(~x, ~y) = ~x†Q~y.

Note: Your book uses the opposite convention about which

variable is linear, writing B(~v, c~w) = cB(~v, ~w) and

B(c~v, ~w) = cB(~v, ~w). As a result, they are constantly writing

(~x|~y) = ~y†Q~x. Both are roughly equally common in the literature;

taking the first variable linear (like your book) is more common in

pure math; taking the second variable linear is more common in

applied math, physics and engineering.

Also, your book uses ∗ instead of †. But your book also uses ∗ for

the dual space!



Sesquilinear forms

Let V be a complex vector space. A sesquilinear form takes an

input two vectors from V and gives as output a complex number

such that:

B(~v1 + ~v2, ~w) = B(~v1, ~w) + B(~v2, ~w)

B(~v, ~w1 + ~w2) = B(~v, ~w1) + B(~v, ~w2)

B(~v, c~w) = cB(~v, ~w) B(c~v, ~w) = cB(~v, ~w).

A sesquilinear form is Hermitian if

B(~v, ~w) = B(~w,~v).

Note that, for a Hermitian linear form, we have B(~v,~v) = B(~v,~v),

so B(~v,~v) is always real.
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B(~v, ~w) = B(~w,~v).

Note that, for a Hermitian linear form, we have B(~v,~v) = B(~v,~v),

so B(~v,~v) is always real.

A Hermitian bilinear form is positive definite if, for all ~v 6= 0, we

have B(~v,~v) > 0.



As matrices, Hermitian means that Q = Q†. For example, here is a

Hermitian matrix: 
3 5 + 3i −2 + 3i

5− 3i 7 −4i

−2− 3i 4i 11





The most standard positive definite Hermitian form on Cn is

simply:

〈(p1, p2, . . . , pn), (q1, q2, . . . , qn)〉 = p1q1 + p2q2 + · · ·+ pnqn.

In other words,

〈(x1 + y1i, . . . , xn + yni), (u1 + v1i, . . . , un + vni)〉 =

(x1 − y1i)(u1 + v1i) + · · ·+ (xn − yni)(un + vni).

In particular,

〈(x1 + y1i, . . . , xn + yni), (x1 + y1i, . . . , xn + yni)〉 =

(x1 − y1i)(x1 + y1i) + · · ·+ (xn − yni)(xn + yni) =

x2
1 + y21 + x2

2 + y22 + · · ·+ x2
n + y2n ≥ 0.



Let V be a complex vector space with a positive definite Hermitian

form:

Given an orthogonal basis ~u1, ~u2, . . . , ~uk for a subspace L of V ,

orthogonal projection onto L is given by

pL(~v) =
∑ B(~ui, ~v)

B(~ui, ~ui)
~ui

as before.
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orthogonal projection onto L is given by
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The Gram-Schmidt algorithm works exactly as before. So every

finite dimensional vector space with a positive definite Hermitian

form has an orthonormal basis.


