Adjoints, normal and unitary operators, consequences for eigenvalues
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For finite dimensional complex vector spaces, we analogously define

AT W =V by
(A(v), w) = (v, AT (w)).

In terms of orthonormal bases for V and W, the AT map is given

by the complex conjugate transpose matrix. If A is real, then AT is
just AT

In particular, if V = W, then both A and A" are square matrices.




This gives us some key definitions. Let V' be a finite dimensional
real or complex vector space with an inner product and let
A:V — V be a linear map.

1. The map A is called self-adjoint if A = AT. In the real case
this is also called symmetric; in the complex case it is also

called Hermaitian.

2. The map A is called unitary if A=' = AT. In the real case, we

also call this orthogonal.
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The map A is called unitary if A=! = AT. In the real case, we also

call this orthogonal.

The geometric meaning of a unitary/orthogonal matrix is that it

preserves the inner product:

(A(9), A(w@)) = (7, AT(A(@))) = (7, ).

Another way to say this is that the rows/columns of an

orthogonal /unitary matrix are an orthonormal basis.

Apology for notation: We really should call these “orthonormal

matrices”. Sorry.




Let V be a finite dimensional real or complex vector space with an
inner product and let A: V — V be a linear map.

1. The map A is called self-adjoint if A = AT. In the real case
this is also called symmetric; in the complex case it is also

called Hermatian.

. The map A is called unitary if A=—! = AT. In the real case, we

also call this orthogonal.

. There is a useful condition which includes both “self-adjoint”
and “unitary”: The map A is called normal if AAT = AT A.




Here is where we are heading:

Theorem: A matrix is normal if and only if it has an orthonormal

basis over C.
A normal matrix is self-adjoint if and only if it has real eigenvalues.

A normal matrix is unitary if and only if it has eigenvalues on the

unit circle: {cosf + isin6}.
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Example:

The matrix

[—006.58 81%]

is unitary (and orthogonal). Its characteristic polynomial is
det [“5%° %% ] = (x —0.6)* + (0.8)* = 2* — 1.2z + 1.

The roots are 0.6 £ 0.8s.
The 0.6 + 0.87 eigenvector is

Ker [(0.6+0.87;)—0.6 —0.8 } _ Ker [0.8@' _0_8} _

0.8 (0.64-0.87)—0.6 0.8 0.8i

Similarly, the 0.6 — 0.8¢ eigenvector is [_11]




Example continued:

1] and [_1@] are orthogonal, and we can scale them to

The vectors | ;

be orthonormal. So

[—00% 81%} =U [O'GBO& 0.6—00.873] Ut =U [0'630& 0.6—00.81'} U’

forU:%H_li}.




Theorem: A matrix is normal if and only if it has an orthonormal
basis over C. A normal matrix is self-adjoint if and only if it has

real eigenvalues. A normal matrix is unitary if and only if it has

eigenvalues on the unit circle: {cosf + isinf}.

The easy parts: If A =UDUT, then
AT = (UDUNW = U D'UT = UDUT, so

AAY =UDU'UDU" =UDDU" =UDDU" = UDUTUDU" = AT A.
If the eigenvalues are real, we have D = D, so this shows that
Al =UDU'" =UDU' = A.

If the eigenvalues are on the unit circle, then we have D = D!, so
this shows that AT = UDUT =UD~'UT = A~




The hard part:

Let V' be a finite dimensional complex vector space with an inner

product. Let A:V — V be normal. We want to show that A has

an orthonormal basis.




The hard part:

Let V' be a finite dimensional complex vector space with an inner
product. Let A:V — V be normal. We want to show that A has

an orthonormal basis.

We do know that y 4(x) has a root, since every polynomial over the

complex numbers has a root. So let v be a nonzero eigenvector of
A, with eigenvalue \. We want to show that A takes 7+ to ¥+.

Then we will just induct.
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Let V be a finite dimensional complex vector space with an inner

product. Let A:V — V be normal ... We want to show that A

takes U+ to 0.

. — — — — | - — —
Take an orthonormal basis v, vs, ..., U, of v—, so v, va, U3, ...

is an orthonormal basis of V. In this basis,

A\ A1z A1z - Alg

0 = * e *

0 = o and AT =

The (1,1) entry of AAT is

AN+ A Ao + A1z A1z + - + A1 Ay = |>\|2 + Z \Alj\Q-
j=2




Let V be a finite dimensional complex vector space with an inner

product. Let A:V — V be normal ... We want to show that A

takes U+ to 0.

Take an orthonormal basis ¥y, ¥, ..., U, of ¥+, so T, Ta, U3, ...

is an orthonormal basis of V. In this basis,

X\ A1g A1z - Aqgn ]
0 = * e *

A=1|°* o and AT =

0 =x *

The (1,1) entry of AAT is

A\ + Ao Ais + A13Aiz + -+ A A, = |\ + Z [Aq;|%.
=2

The (1,1) entry of ATA is
AM+04+0+--+0= A




The (1,1) entry of AAT is

M+ A1pArs + A13Ai3 + - + A Ay, = |>\|2 + Z \Alj\Q-
j=2

The (1,1) entry of ATA is

AM+04+0+--+0= A

So ‘)\‘2 + Z?:Z |A1j|2 = ‘)\‘2 and A12 = A13 == Aln = 0.




The (1,1) entry of AAT is

M+ A1pArs + A13Ai3 + - + A Ay, = |>\|2 + Z \Alj\Q-
j=2

The (1,1) entry of ATA is

AM+04+0+--+0= A

SO ‘)\‘2 + Z?:Z |A1j|2 — ‘)\‘2 and Alg — A13 = = Aln = 0.
So A is of the form

_0 * % ....

We see that A takes ¥+, and now we can induct. QED




