
Adjoints, normal and unitary operators, consequences for eigenvalues
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For finite dimensional complex vector spaces, we analogously define

A† : W → V by

〈A(v), w〉 =
〈
v,A†(w)

〉
.

In terms of orthonormal bases for V and W , the A† map is given

by the complex conjugate transpose matrix. If A is real, then A† is

just AT .

In particular, if V = W , then both A and A† are square matrices.
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The map A is called unitary if A−1 = A†. In the real case, we also

call this orthogonal .

The geometric meaning of a unitary/orthogonal matrix is that it

preserves the inner product:

〈A(~v), A(~w)〉 = 〈~v,A†(A(~w))〉 = 〈~v, ~w〉.

Another way to say this is that the rows/columns of an

orthogonal/unitary matrix are an orthonormal basis.

Apology for notation: We really should call these “orthonormal

matrices”. Sorry.



Let V be a finite dimensional real or complex vector space with an

inner product and let A : V → V be a linear map.

1. The map A is called self-adjoint if A = A†. In the real case

this is also called symmetric; in the complex case it is also

called Hermitian .

2. The map A is called unitary if A−1 = A†. In the real case, we

also call this orthogonal .

3. There is a useful condition which includes both “self-adjoint”

and “unitary”: The map A is called normal if AAT = ATA.



Here is where we are heading:

Theorem: A matrix is normal if and only if it has an orthonormal

basis over C.

A normal matrix is self-adjoint if and only if it has real eigenvalues.

A normal matrix is unitary if and only if it has eigenvalues on the

unit circle: {cos θ + i sin θ}.
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det
[
x−0.6 −0.8
0.8 x−0.6

]
= (x− 0.6)2 + (0.8)2 = x2 − 1.2x+ 1.

The roots are 0.6± 0.8i.

The 0.6 + 0.8i eigenvector is

Ker
[
(0.6+0.8i)−0.6 −0.8

0.8 (0.6+0.8i)−0.6

]
= Ker

[
0.8i −0.8
0.8 0.8i

]
= C [ 1i ] .

Similarly, the 0.6− 0.8i eigenvector is
[

1
−i
]
.



Example continued:

The vectors [ 1i ] and
[

1
−i
]

are orthogonal, and we can scale them to

be orthonormal. So[
0.6 0.8
−0.8 0.6

]
= U

[
0.6+0.8i 0

0 0.6−0.8i
]
U−1 = U

[
0.6+0.8i 0

0 0.6−0.8i
]
U†

for U =
1√
2

[
1 1
i −i

]
.



Theorem: A matrix is normal if and only if it has an orthonormal

basis over C. A normal matrix is self-adjoint if and only if it has

real eigenvalues. A normal matrix is unitary if and only if it has

eigenvalues on the unit circle: {cos θ + i sin θ}.

The easy parts: If A = UDU†, then

A† = (UDU†)† = U††D†U† = UDU†, so

AA† = UDU†UDU† = UDDU† = UDDU† = UDU†UDU† = A†A.

If the eigenvalues are real, we have D = D, so this shows that

A† = UDU† = UDU† = A.

If the eigenvalues are on the unit circle, then we have D = D−1, so

this shows that A† = UDU† = UD−1U† = A−1.
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Let V be a finite dimensional complex vector space with an inner

product. Let A : V → V be normal. We want to show that A has

an orthonormal basis.



The hard part:

Let V be a finite dimensional complex vector space with an inner
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an orthonormal basis.

We do know that χA(x) has a root, since every polynomial over the

complex numbers has a root. So let ~v be a nonzero eigenvector of

A, with eigenvalue λ. We want to show that A takes ~v⊥ to ~v⊥.

Then we will just induct.
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The (1, 1) entry of AA† is

λλ+A12A12 +A13A13 + · · ·+A1nA1n = |λ|2 +
n∑
j=2

|A1j |2.

The (1, 1) entry of A†A is

λλ+ 0 + 0 + · · ·+ 0 = |λ|2.

So |λ|2 +
∑n
j=2 |A1j |2 = |λ|2 and A12 = A13 = · · · = A1n = 0.



The (1, 1) entry of AA† is

λλ+A12A12 +A13A13 + · · ·+A1nA1n = |λ|2 +
n∑
j=2

|A1j |2.

The (1, 1) entry of A†A is

λλ+ 0 + 0 + · · ·+ 0 = |λ|2.

So |λ|2 +
∑n
j=2 |A1j |2 = |λ|2 and A12 = A13 = · · · = A1n = 0.

So A is of the form  λ 0 0 ··· 0
0 ∗ ∗ ··· ∗
0 ∗ ∗ ··· ∗

. . .
0 ∗ ∗ ··· ∗

 .
We see that A takes ~v⊥, and now we can induct. QED


