Let V be a complex vector vector space equipped with a positive definite Hermitian form $B($, $)$. We check some of the properties of $B($, $)$ which were asserted without proof on Tuesday:

Problem 1. Let $\vec{v} \in V$. You might wonder whether we should define \vec{v}^{\perp} to be $\{\vec{w}: B(\vec{v}, \vec{w}) =$ 0} or ${\vec w}: B(\vec w, \vec v) = 0$. Show that it doesn't matter, because these are the same subspace.

Problem 2. Let W be a subspace of V. Show that $W \cap W^{\perp} = {\mathbf{\vec{0}}}$.

Recall that $A: V \to V$ is called:

- Hermitian if $A = A^{\dagger}$
- unitary if $A^{-1} = A^{\dagger}$.
- normal if $AA^{\dagger} = A^{\dagger}A$.

Problem 3. Let V be \mathbb{C}^2 with the standard Hermitian inner product. Let $A = \begin{bmatrix} 1 & i \\ i & 1 \end{bmatrix}$.

- (1) Show that A is normal.
- (2) Compute an orthonormal eigenbasis for A.
- (3) Is A Hermitian? Is it unitary?

Problem 4. Let V be a vector space with a positive definite Hermitian form. Let $T: V \to V$ be a linear operator.

- (1) If T is normal, show that there are Hermitian operators X and Y with $T = X + iY$ and $XY = YX$.
- (2) Conversely, show that, if X and Y are Hermitian operators X and Y with $T = X + iY$ and $XY = YX$ then T is self-adjoint.

We now come back to some old problems from homework:

Problem 5. On Problem Set 10, Problem 3, we considered the vector space of functions $[-\pi, \pi] \to \mathbb{R}$ with the inner product $\langle f(x), g(x)\rangle = \int_{-\pi}^{\pi} f(x)g(x)dx$. Now that we know about Hermitian forms, consider instead complex valued functions $[-\pi, \pi] \to \mathbb{C}$ with the inner product $\langle f(x), g(x) \rangle = \int_{-\pi}^{\pi} \overline{f(x)} g(x) dx$.

- (1) Recall that $e^{i\theta} = \cos(\theta) + i \sin(\theta)$. Show that the list of functions $\frac{1}{\sqrt{2}}$ $\frac{1}{2\pi}e^{in\theta}$, for $n \in \mathbb{Z}$, is orthonormal.
- (2) Convert the change of basis matrix between this orthonormal basis, and the orthonormal basis $\frac{1}{\sqrt{2}}$ $\frac{1}{2\pi}, \frac{1}{\sqrt{2}}$ $=\cos(n\theta),\,\frac{1}{\sqrt{2}}$ $\frac{1}{\pi}$ sin(*n* θ) on the Problem Set.

Problem 6. On Problem Set 8, Problem 3, we considered a differential equation for a collection of masses connected by springs. For simplicity, we take all the masses to be equal to m. Let k_{ij} be the spring constant on the spring joining mass i to mass j. Then the equations of motion are

$$
m\frac{d^2x_i(t)}{(dt)^2} = \sum_j k_{ij}(x_j(t) - x_i(t)).
$$

- (1) Rewrite this equation in the form $m \frac{d^2}{(dt)}$ $\frac{d^2}{(dt)^2}\vec{x}(t) = -K\vec{x}(t)$ for a matrix K. As a starting example, you might want to do the case where there is a spring from mass 1 to mass 2 of strength k_{12} and a spring from mass 2 to mass 3 of strength k_{23} .
- (2) Show that the eigenvalues of K are nonnegative real integers.
- (3) Show how to convert eigenvalues of K into solutions of the form $\vec{x}(t) = \vec{a} \cos(\omega t)$ for some vector \vec{a} .