The Gramm-Schmidt algorithm




Let V be a vector space over a field F'. Recall that a bilinear form
is a function B which takes as input two vectors v and w and is

linear in each input, meaning
B(ty + vy, W) = B(t1, W) + B(v2, W)

B(U,w + W) = B(V,w1) + B(U, wWs)
J) = c¢B(U,W).
The bilinear form B is called symmetric if B(v,w) = B(wW, 7).

A symmetric bilinear form over R is called positive definite if, for

all nonzero vectors v, we ave B(v,7) > 0.

A positive definite symmetric bilinear form is called an tnner

product. We’ll often denote an inner product as (v|w), (¥, W) or

—_  —

U -w.




If V' is a vector space with an inner product, and X C V', then
X N X+ = {0} and it is often true that V = X @ X . If this holds,
then we write px for the projection onto X whose kernel is X .

In particular, if X has a finite orthonormal basis w1, us, ..., Uy,
then V = X @ X1 and

px (0) = B(i;, ).
=1




Finally, let us show that any finite dimensional vector space V,

with an inner product B, has an orthonormal basis. Our proof is
by induction on dim V'; the base case dim V' = 0 is trivial.
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have

)= B(us, %) =--+= B(u,_1,4) =0

B(u,w) > 0.




Finally, let us show that any finite dimensional vector space V,
with an inner product B, has an orthonormal basis. Our proof is
by induction on dim V'; the base case dim V' = 0 is trivial.

So, take an n — 1 dimensional subspace X of V. By induction, X

has an orthonormal basis w1, U, ..., Up—_1.

Let ¢ be any vector not in X. Put ¥ = v — px(¥). Then 4 is
orthogonal to X and (since ¥ ¢ X), « is not 0. This means that we

have

27/&:) — :B(ﬁn—laﬁ) =0

B(u,w) > 0.

Rescaling @ by +/B(u, i), we get an orthonormal basis for X. [




Remark: It is often convenient to work with orthogonal but not
orthonormal bases in this algorithm. If uy, uo, ..., %, is an

orthogonal basis for X, then

—

px (7)




A boring example: Let

U =[11000] Uy =[31200] U3 = [60323].

e Find a vector ¢ in Span(u, #2) which is orthogonal to ;:

e Find a vector « in Span(, Us, U3) which is orthogonal to 4; and us:
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A boring example: Let

U1 =[11000] Uy =[31200] U3 = [60323].

e Find a vector ¢ in Span(u, #2) which is orthogonal to ;:

The orthogonal projection of tis onto Ruy is 22221 = su; = 2U7.
Ui-uU

So we should take ¥ = tip — 2ty = [1-1200].
e Find a vector « in Span (s, Us, 3) which is orthogonal to 4 and us:

We compute the orthogonal projection onto Span(uy, us) using the

orthonormal basis u;, ¥. The projection is

G — IR
1 3u1_|_ .3

e sy =S4 + 20 =[51400].

6
So we should take W =[60323] —|51200] =[1-1-123],

In short, our orthogonal basis is [11000], [1 —=1200], [1 -1 —123].




Our orthogonal basis is [11000], [1-1200], [1 -1 —123].

)
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And the orthonormal version is — [11000], ==[1-1200],

%[1—1 ~123].




A more interesting example: Let V be the vector space of

polynomials of degree < n in R|x

. Put
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Let’s find an orthogonal basis. For n = 0, we just take ug(z) = 1.
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Let’s find an orthogonal basis. For n = 0, we just take ug(z) = 1.

1
Jo Lode o 1)2.

For n =1, we can take ui(z) =z — [REBYE

To find our next polynomial, project % onto Span(ug, u1):

fol (x —1/2) - 2%dw

fol 1-2%dx
Ji1-1de [ (z—1/2) - (x — 1/2)dz
so ug = 2% —x + 1/6.

1+

(x—1/2)=2—1/6




up =1 wy=x—1/2 uy=2a°—x+1/6.

We can now take any function on [0, 1] and find the closest
quadratic to it. For example, the orthogonal projection of e* onto

quadratics is

fol eTug(x)dx wo(z) + fol @xul(a;)da;ul(x) . fol equ(x)da:u

fl uo(x)2dx fl uy(z)2dx fl ug(x)2dw

0 0 0

(e — 1) xug(x) + (—6e + 18) * ui(x) + (210e — 570) * us(x)




How good is this? Here are plots of e” and ¢(x):
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How good is this? Here they are together
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Summary: Taking orthogonal projections onto a space of functions,
even a low dimensional one like quadratics, can give great
approximations!




