
The Gramm-Schmidt algorithm



Let V be a vector space over a field F . Recall that a bilinear form

is a function B which takes as input two vectors ~v and ~w and is

linear in each input, meaning

B(~v1 + ~v2, ~w) = B(~v1, ~w) + B(~v2, ~w)

B(~v, ~w1 + ~w2) = B(~v, ~w1) + B(~v, ~w2)

B(c~v, ~w) = B(~v, c~w) = cB(~v, ~w).

The bilinear form B is called symmetric if B(~v, ~w) = B(~w,~v).

A symmetric bilinear form over R is called positive definite if, for

all nonzero vectors ~v, we ave B(~v,~v) > 0.

A positive definite symmetric bilinear form is called an inner

product . We’ll often denote an inner product as (~v|~w), 〈~v, ~w〉 or

~v · ~w.



If V is a vector space with an inner product, and X ⊆ V , then

X ∩X⊥ = {0} and it is often true that V = X ⊕X⊥. If this holds,

then we write pX for the projection onto X whose kernel is X⊥.

In particular, if X has a finite orthonormal basis ~u1, ~u2, . . . , ~un,

then V = X ⊕X⊥ and

pX(~v) =
n∑

i=1

B(~ui, ~v)~ui.



Finally, let us show that any finite dimensional vector space V ,

with an inner product B, has an orthonormal basis. Our proof is

by induction on dimV ; the base case dimV = 0 is trivial.
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Finally, let us show that any finite dimensional vector space V ,

with an inner product B, has an orthonormal basis. Our proof is

by induction on dimV ; the base case dimV = 0 is trivial.

So, take an n− 1 dimensional subspace X of V . By induction, X

has an orthonormal basis ~u1, ~u2, . . . , ~un−1.

Let ~v be any vector not in X. Put ~u = ~v − pX(~v). Then ~u is

orthogonal to X and (since ~v 6∈ X), ~u is not 0. This means that we

have

B(~u1, ~u) = B(~u2, ~u) = · · · = B(~un−1, ~u) = 0

B(~u, ~u) > 0.

Rescaling ~u by
√

B(~u, ~u), we get an orthonormal basis for X. �



Remark: It is often convenient to work with orthogonal but not

orthonormal bases in this algorithm. If ~u1, ~u2, . . . , ~un is an

orthogonal basis for X, then

pX(~v) =
n∑

i=1

B(~ui, ~v)

B(~ui, ~ui)
~ui.



A boring example: Let

~u1 = [ 1 1 0 0 0 ] ~u2 = [ 3 1 2 0 0 ] ~u3 = [ 6 0 3 2 3 ] .

• Find a vector ~v in Span(~u1, ~u2) which is orthogonal to ~u1:

• Find a vector ~w in Span(~u1, ~u2, ~u3) which is orthogonal to ~u1 and ~u2:
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~u1·~u3

~u1·~u1
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2~u1 + 12

6 ~v = [ 5 1 4 0 0 ] .
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In short, our orthogonal basis is [ 1 1 0 0 0 ], [ 1 −1 2 0 0 ], [ 1 −1 −1 2 3 ].



Our orthogonal basis is [ 1 1 0 0 0 ], [ 1 −1 2 0 0 ], [ 1 −1 −1 2 3 ].

And the orthonormal version is 1√
2

[ 1 1 0 0 0 ], 1√
6

[ 1 −1 2 0 0 ],
1√
16

[ 1 −1 −1 2 3 ].



A more interesting example: Let V be the vector space of

polynomials of degree ≤ n in R[x]. Put

〈f(x), g(x)〉 =

∫ 1

0

f(x)g(x)dx.

Let’s find an orthogonal basis. For n = 0, we just take u0(x) = 1.
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A more interesting example: Let V be the vector space of

polynomials of degree ≤ n in R[x]. Put

〈f(x), g(x)〉 =

∫ 1

0

f(x)g(x)dx.

Let’s find an orthogonal basis. For n = 0, we just take u0(x) = 1.

For n = 1, we can take u1(x) = x−
∫ 1
0
1·xdx∫ 1

0
1·1dx = x− 1/2.

To find our next polynomial, project x2 onto Span(u0, u1):∫ 1

0
1 · x2dx∫ 1

0
1 · 1dx

1 +

∫ 1

0
(x− 1/2) · x2dx∫ 1

0
(x− 1/2) · (x− 1/2)dx

(x− 1/2) = x− 1/6

so u2 = x2 − x + 1/6.



u0 = 1 u1 = x− 1/2 u2 = x2 − x + 1/6.

We can now take any function on [0, 1] and find the closest

quadratic to it. For example, the orthogonal projection of ex onto

quadratics is∫ 1

0
exu0(x)dx∫ 1

0
u0(x)2dx

u0(x) +

∫ 1

0
exu1(x)dx∫ 1

0
u1(x)2dx

u1(x) +

∫ 1

0
exu2(x)dx∫ 1

0
u2(x)2dx

u2(x).

(e− 1) ∗ u0(x) + (−6e + 18) ∗ u1(x) + (210e− 570) ∗ u2(x) =: q(x).



How good is this? Here are plots of ex and q(x):



How good is this? Here they are together

For contrast, I’ve added in the Taylor series 1 + x + x2/2:
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For contrast, I’ve added in the Taylor series 1 + x + x2/2:

Summary: Taking orthogonal projections onto a space of functions,

even a low dimensional one like quadratics, can give great

approximations!


