

- 1. Let T be self adjoint, and let \vec{v} be a nonzero eigenvector of T. Then T maps \vec{v}^{\perp} to itself.
- 2. Let T be self adjoint, and let \vec{u} and \vec{v} be nonzero eigenvectors of T with distinct eigenvalues α and β . Then $\langle \vec{u}, \vec{v} \rangle = 0$.
- 3. If T has an orthonormal eigenbasis then T is self-adoint.

1. Let T be self adjoint, and let \vec{v} be a nonzero eigenvector of T. Then T maps \vec{v}^{\perp} to itself.

Proof: Let \vec{w} be orthogonal to \vec{v} . Then $\langle \vec{v}, T(\vec{w}) \rangle = \langle T(\vec{v}), \vec{w} \rangle = \langle \lambda \vec{v}, \vec{w} \rangle = \lambda \langle \vec{v}, \vec{w} \rangle = 0$. So $T(\vec{w})$ is also orthogonal to \vec{v} .

2. Let T be self adjoint, and let \vec{u} and \vec{v} be nonzero eigenvectors of T with distinct eigenvalues α and β . Then $\langle \vec{u}, \vec{v} \rangle = 0$.

Proof: We have $\langle T(\vec{v}), \vec{w} \rangle = \langle \vec{v}, T(\vec{w}) \rangle$ so $\alpha \langle \vec{v}, \vec{w} \rangle = \beta \langle \vec{v}, \vec{w} \rangle$ and we deduce that $\langle \vec{v}, \vec{w} \rangle = 0$.

3. If T has an orthonormal eigenbasis then T is self-adoint.

Proof: Let $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$ be the orthonormal eigenbasis with $T(\vec{v}_i) = \lambda_i \vec{v}_i$. Let $\vec{x} = \sum a_i \vec{v}_i$ and $\vec{y} = \sum b_i \vec{v}_i$. Then $\langle T(\vec{x}), \vec{y} \rangle = \langle \sum_i a_i \lambda_i \vec{v}_i, \sum_j b_j \vec{v}_j \rangle = \sum_i a_i \lambda_i b_i$ and $\langle \vec{x}, T(\vec{y}) \rangle = \langle \sum_i a_i \vec{v}_i, \sum_j b_j \lambda_j \vec{v}_j \rangle = \sum_i a_i b_i \lambda_i$ as well.

We now have all the tools necessary to prove the converse of the last statement:

Theorem: Let V be a finite dimensional real vector space with an inner product $\langle \ , \ \rangle$ and let $T:V\to V$ be a self-adjoint linear transformation. Then T has an orthonormal eigenbasis.

Our main task will be to prove that T has one real eigenvector \vec{v} . Once we do this, we will know that T takes $\vec{v}^{\perp} \longrightarrow \vec{v}^{\perp}$ and, by induction, $T|_{\vec{v}^{\perp}}$ will have an orthonormal basis of eigenvectors.

T has a real eigenvector – first proof

The characteristic polynomial $\chi_T(x)$ must have roots in the complex numbers. Let a+bi be one of these roots. We will show that b=0.

T has a real eigenvector – first proof

The characteristic polynomial $\chi_T(x)$ must have roots in the complex numbers. Let a+bi be one of these roots. We will show that b=0.

If not, then there is some (nonzero) complex vector with eigenvalue a + bi. Let it be $\vec{x} + i\vec{y}$ with \vec{x} and \vec{y} real. Then $\vec{x} - i\vec{y}$ is an complex eigenvector with eigenvalue a - bi.

T has a real eigenvector – first proof

The characteristic polynomial $\chi_T(x)$ must have roots in the complex numbers. Let a + bi be one of these roots. We will show that b = 0.

If not, then there is some (nonzero) complex vector with eigenvalue a + bi. Let it be $\vec{x} + i\vec{y}$ with \vec{x} and \vec{y} real. Then $\vec{x} - i\vec{y}$ is an complex eigenvector with eigenvalue a - bi.

Since $a + bi \neq a - bi$, the vectors $\vec{x} + i\vec{y}$ and $\vec{x} - i\vec{y}$ are orthogonal. But

$$\langle \vec{x} + i\vec{y}, \vec{x} - i\vec{y} \rangle = \langle \vec{x}, \vec{x} \rangle - i\langle \vec{x}, \vec{y} \rangle + i\langle \vec{y}, \vec{x} \rangle + \langle \vec{y}, \vec{y} \rangle = \langle \vec{x}, \vec{x} \rangle + \langle \vec{y}, \vec{y} \rangle > 0$$

Contradiction, \square .

Let S be the unit sphere $\{\vec{v}: \langle \vec{v}, \vec{v} \rangle = 1\}$. There is some $\vec{v} \in S$ where $\langle T(\vec{v}), \vec{v} \rangle$ is maximized. We will show that this \vec{v} is an eigenvector.

Let S be the unit sphere $\{\vec{v}: \langle \vec{v}, \vec{v} \rangle = 1\}$. There is some $\vec{v} \in S$ where $\langle T(\vec{v}), \vec{v} \rangle$ is maximized. We will show that this \vec{v} is an eigenvector.

Suppose that $T(\vec{v})$ is not in $\mathbb{R}\vec{v}$. Then \vec{v} and $T(\vec{v})$ span a 2-plane. Let \vec{v} and \vec{w} be an orthonormal basis for this plane, with $\langle T(\vec{v}), \vec{w} \rangle > 0$.

Let S be the unit sphere $\{\vec{v}: \langle \vec{v}, \vec{v} \rangle = 1\}$. There is some $\vec{v} \in S$ where $\langle T(\vec{v}), \vec{v} \rangle$ is maximized. We will show that this \vec{v} is an eigenvector.

Suppose that $T(\vec{v})$ is not in $\mathbb{R}\vec{v}$. Then \vec{v} and $T(\vec{v})$ span a 2-plane. Let \vec{v} and \vec{w} be an orthonormal basis for this plane, with $\langle T(\vec{v}), \vec{w} \rangle > 0$.

Consider the circle $(\cos \theta)\vec{v} + (\sin \theta)\vec{w}$. Every vector on this circle is on S. For such a vector, we have

$$\left\langle T\left((\cos\theta)\vec{v} + (\sin\theta)\vec{w}\right), \left(\cos\theta\right)\vec{v} + (\sin\theta)\vec{w} \right\rangle =$$

$$\cos^{2}\theta \left\langle T(\vec{v}), \vec{v} \right\rangle + \cos\theta\sin\theta \left(\left\langle T(\vec{v}), \vec{w} \right\rangle + \left\langle \vec{v}, T(\vec{w}) \right\rangle \right) + \sin^{2}\theta \left\langle T(\vec{w}), \vec{w} \right\rangle$$

$$\left(\cos^{2}\theta\right) \left\langle T(\vec{v}), \vec{v} \right\rangle + \left(2\cos\theta\sin\theta\right) \left\langle T(\vec{v}), \vec{w} \right\rangle + \left(\sin^{2}\theta\right) \left\langle T(\vec{w}), \vec{w} \right\rangle$$

$$\left\langle T\left((\cos\theta)\vec{v} + (\sin\theta)\vec{w}\right), \left(\cos\theta\right)\vec{v} + (\sin\theta)\vec{w} \right\rangle =$$

$$\cos^{2}\theta \left\langle T(\vec{v}), \vec{v} \right\rangle + \cos\theta\sin\theta \left(\left\langle T(\vec{v}), \vec{w} \right\rangle + \left\langle \vec{v}, T(\vec{w}) \right\rangle \right) + \sin^{2}\theta \left\langle T(\vec{w}), \vec{w} \right\rangle$$

$$\left(\cos^{2}\theta\right) \left\langle T(\vec{v}), \vec{v} \right\rangle + \left(2\cos\theta\sin\theta\right) \left\langle T(\vec{v}), \vec{w} \right\rangle + \left(\sin^{2}\theta\right) \left\langle T(\vec{w}), \vec{w} \right\rangle$$

So

$$\frac{d}{d\theta}\big|_{\theta=0} \left\langle T\left((\cos\theta)\vec{v} + (\sin\theta)\vec{w}\right), \ (\cos\theta)\vec{v} + (\sin\theta)\vec{w} \right\rangle = \left\langle T(\vec{v}), \vec{w} \right\rangle > 0.$$

This contradicts that $\langle T(\vec{x}), \vec{x} \rangle$ is supposed to be maximized at $\vec{x} = \vec{v}$. \square