Self-adjoint operators have orthonormal eigenbases




. Let T be self adjoint, and let ¥ be a nonzero eigenvector of T
Then T maps 0+ to itself.

. Let T be self adjoint, and let w and v be nonzero eigenvectors

of T' with distinct eigenvalues o and . Then (4, v) = 0.

. It T" has an orthonormal eigenbasis then T’ is self-adoint.




1. Let T be self adjoint, and let ¥ be a nonzero eigenvector of T'.
Then T maps 0+ to itself.

Proof: Let @ be orthogonal to v. Then (¢, T (W)) = (T(v), W)
= (AU, W) = A\(¥,wW) = 0. So T'(w) is also orthogonal to .

. Let T be self adjoint, and let ¥ and ¥ be nonzero eigenvectors

of T' with distinct eigenvalues o and 3. Then (4, v) = 0.
Proof: We have (T'(v),w) = (0, T(w)) so (v, W) = (¥, W)

and we deduce that (v, @) = 0.

. If T" has an orthonormal eigenbasis then T’ is self-adoint.

Proof: Let v1, vg, ..., U, be the orthonormal eigenbasis with
T(U;) = \iv;. Let © =) a;9; and y = > b;v;. Then

(T'(Z),9) = Qs aihili, D, b;v;) = a;Aib; and

(T, T(Y)) = Qs aiiy Y5 b5AU;) = > a;biA; as well.




We now have all the tools necessary to prove the converse of the
last statement:

Theorem: Let V be a finite dimensional real vector space with an
inner product ( , ) and let T : V — V be a self-adjoint linear
transformation. Then 1" has an orthonormal eigenbasis.

Our main task will be to prove that 1" has one real eigenvector v.

Once we do this, we will know that T takes ¢+ — ¢ and, by

induction, T'|3. will have an orthonormal basis of eigenvectors.




I" has a real eigenvector — first proof

The characteristic polynomial y7(z) must have roots in the

complex numbers. Let a + b: be one of these roots. We will show
that b = 0.




I" has a real eigenvector — first proof

The characteristic polynomial y7(z) must have roots in the

complex numbers. Let a + b: be one of these roots. We will show
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If not, then there is some (nonzero) complex vector with eigenvalue

a + bi. Let it be £ 4+ ¢y with £ and 3 real. Then ¥ — iy is an

complex eigenvector with eigenvalue a — bz.




I" has a real eigenvector — first proof

The characteristic polynomial y7(z) must have roots in the

complex numbers. Let a + b: be one of these roots. We will show
that b = 0.

If not, then there is some (nonzero) complex vector with eigenvalue
a + bi. Let it be £ 4+ ¢y with £ and 3 real. Then ¥ — iy is an

complex eigenvector with eigenvalue a — bz.

Since a + bt # a — bt, the vectors T + iy and T — iy are orthogonal.
But

(F+if, E— i) = (F.3) ~i(Z,§) +i{7.2) +(F

Contradiction, .




T has a real eigenvector — second proof

Let S be the unit sphere {v': (¢, ¥) = 1}. There is some ¢ € S where
(T'(v),v) is maximized. We will show that this ¢’ is an eigenvector.
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Suppose that T'(7) is not in Rv. Then ¢ and T'(¥) span a 2-plane.

Let ¥ and w be an orthonormal basis for this plane, with
(T'(V),w) > 0.




T has a real eigenvector — second proof

Let S be the unit sphere {v': (¢, ¥) = 1}. There is some ¢ € S where

—

(T'(v), V) is maximized. We will show that this ¢/ is an eigenvector.

Suppose that T'(7) is not in Rv. Then ¢ and T'(¥) span a 2-plane.

Let ¥ and w be an orthonormal basis for this plane, with
(T'(V),w) > 0.

Consider the circle (cos )7 + (sin 0)w. Every vector on this circle is

on S. For such a vector, we have

<T ((cos 0)V + (sinf)w), (cosf)v + (sin 9)u7>

cos? 0(T (%), T) + cos O sin 9(<T(27), @) + (7, T
(cos? O)(T(%), ¥) + (2 cos O sin O) (T (), )




T has a real eigenvector — second proof

<T ((cos 0)U + (sin@)w), (cosf)v + (sin (9)1U>

cos® (T (v), V) + cos@sin@((T(@’), w

(cos® (T (¥), ) + (2 cos O sin ) (T(
So
AN <T ((cos 8)7 + (sin 0)a@) , (cos 8)F+(sin 9)w>

This contradicts that (T'(X), Z) is supposed to be maximized at

T =10.




