
Self-adjoint operators have orthonormal eigenbases



1. Let T be self adjoint, and let ~v be a nonzero eigenvector of T .

Then T maps ~v⊥ to itself.

2. Let T be self adjoint, and let ~u and ~v be nonzero eigenvectors

of T with distinct eigenvalues α and β. Then 〈~u,~v〉 = 0.

3. If T has an orthonormal eigenbasis then T is self-adoint.



1. Let T be self adjoint, and let ~v be a nonzero eigenvector of T .

Then T maps ~v⊥ to itself.

Proof: Let ~w be orthogonal to ~v. Then 〈~v, T (~w)〉 = 〈T (~v), ~w〉
= 〈λ~v, ~w〉 = λ〈~v, ~w〉 = 0. So T (~w) is also orthogonal to ~v.

2. Let T be self adjoint, and let ~u and ~v be nonzero eigenvectors

of T with distinct eigenvalues α and β. Then 〈~u,~v〉 = 0.

Proof: We have 〈T (~v), ~w〉 = 〈~v, T (~w)〉 so α〈~v, ~w〉 = β〈~v, ~w〉
and we deduce that 〈~v, ~w〉 = 0.

3. If T has an orthonormal eigenbasis then T is self-adoint.

Proof: Let ~v1, ~v2, . . . , ~vn be the orthonormal eigenbasis with

T (~vi) = λi~vi. Let ~x =
∑
ai~vi and ~y =

∑
bi~vi. Then

〈T (~x), ~y〉 = 〈
∑
i aiλi~vi,

∑
j bj~vj〉 =

∑
aiλibi and

〈~x, T (~y)〉 = 〈
∑
i ai~vi,

∑
j bjλj~vj〉 =

∑
aibiλi as well.



We now have all the tools necessary to prove the converse of the

last statement:

Theorem: Let V be a finite dimensional real vector space with an

inner product 〈 , 〉 and let T : V → V be a self-adjoint linear

transformation. Then T has an orthonormal eigenbasis.

Our main task will be to prove that T has one real eigenvector ~v.

Once we do this, we will know that T takes ~v⊥ −→ ~v⊥ and, by

induction, T |~v⊥ will have an orthonormal basis of eigenvectors.



T has a real eigenvector – first proof

The characteristic polynomial χT (x) must have roots in the

complex numbers. Let a+ bi be one of these roots. We will show

that b = 0.
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T has a real eigenvector – first proof

The characteristic polynomial χT (x) must have roots in the

complex numbers. Let a+ bi be one of these roots. We will show

that b = 0.

If not, then there is some (nonzero) complex vector with eigenvalue

a+ bi. Let it be ~x+ i~y with ~x and ~y real. Then ~x− i~y is an

complex eigenvector with eigenvalue a− bi.

Since a+ bi 6= a− bi, the vectors ~x+ i~y and ~x− i~y are orthogonal.

But

〈~x+ i~y, ~x− i~y〉 = 〈~x, ~x〉− i〈~x, ~y〉+ i〈~y, ~x〉+ 〈~y, ~y〉 = 〈~x, ~x〉+ 〈~y, ~y〉 > 0.

Contradiction, .
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Let S be the unit sphere {~v : 〈~v,~v〉 = 1}. There is some ~v ∈ S where
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T has a real eigenvector – second proof

Let S be the unit sphere {~v : 〈~v,~v〉 = 1}. There is some ~v ∈ S where

〈T (~v), ~v〉 is maximized. We will show that this ~v is an eigenvector.

Suppose that T (~v) is not in R~v. Then ~v and T (~v) span a 2-plane.

Let ~v and ~w be an orthonormal basis for this plane, with

〈T (~v), ~w) > 0.

Consider the circle (cos θ)~v + (sin θ)~w. Every vector on this circle is

on S. For such a vector, we have〈
T ((cos θ)~v + (sin θ)~w) , (cos θ)~v + (sin θ)~w

〉
=

cos2 θ〈T (~v), ~v〉+ cos θ sin θ
(
〈T (~v), ~w〉+ 〈~v, T (~w)〉

)
+ sin2 θ〈T (~w), ~w〉

(cos2 θ)〈T (~v), ~v〉+ (2 cos θ sin θ)〈T (~v), ~w〉+ (sin2 θ)〈T (~w), ~w〉



T has a real eigenvector – second proof

〈
T ((cos θ)~v + (sin θ)~w) , (cos θ)~v + (sin θ)~w

〉
=

cos2 θ〈T (~v), ~v〉+ cos θ sin θ
(
〈T (~v), ~w〉+ 〈~v, T (~w)〉

)
+ sin2 θ〈T (~w), ~w〉

(cos2 θ)〈T (~v), ~v〉+ (2 cos θ sin θ)〈T (~v), ~w〉+ (sin2 θ)〈T (~w), ~w〉

So

d
dθ

∣∣
θ=0

〈
T ((cos θ)~v + (sin θ)~w) , (cos θ)~v+(sin θ)~w

〉
= 〈T (~v), ~w〉 > 0.

This contradicts that 〈T (~x), ~x〉 is supposed to be maximized at

~x = ~v.


