Let V be a real vector space with an inner product \langle , \rangle . Let $T : V \to V$ be a linear transformation. We say that T is **self-adjoint** if $\langle T(\vec{x}), \vec{y} \rangle = \langle \vec{x}, T(\vec{y}) \rangle$ for all vectors \vec{x} and \vec{y} .

Problem 1. Let V be finite dimensional with orthonormal basis $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$. Let A be the matrix of T in this basis. Show that T is self-adjoint if and only if $A_{ij} = A_{ji}$ for all $1 \le i, j \le n$.

Let's see what happens if we combine the notions of self-adjointness and eigenvectors:

Problem 2. Let T be self adjoint, and let \vec{v} be a nonzero eigenvector of T. Show that T maps \vec{v}^{\perp} to itself.

Problem 3. Let T be self adjoint, and let \vec{u} and \vec{v} be nonzero eigenvectors of T with distinct eigenvalues α and β . Show that $\langle \vec{u}, \vec{v} \rangle = 0$.

Problem 4. Suppose that T has an orthonormal eigenbasis. Show that T is self-adoint.