
First topic: Direct sums and quotient spaces



We start with a homework problem:

In a bit more detail: Let V be a vector space and let X and Y be

subspaces. Show that the following are equivalent:

1. Every vector in V can be written in exactly one way as ~x + ~y

for ~x ∈ X and ~y ∈ Y .

2. Every vector in V can be written as ~x+ ~y for ~x ∈ X and ~y ∈ Y ,

and X ∩ Y = {0}.



We start with a homework problem: Let V be a vector space and

let X and Y be subspaces. Show that the following are equivalent:

1. Every vector in V can be written in exactly one way as ~x + ~y

for ~x ∈ X and ~y ∈ Y .

2. Every vector in V can be written as ~x+ ~y for ~x ∈ X and ~y ∈ Y ,

and X ∩ Y = {0}.

Proof: In either case, we are assuming that every vector can be

written as ~x + ~y.

(1) =⇒ (2): If ~u is in X ∩ Y , then ~x + ~y = (~x + ~u) + (~y − ~u). This

would give multiple formulas for the same vector unless ~u = ~0.

(2) =⇒ (1): Suppose, to the contrary, that ~x1 + ~y1 = ~x2 + ~y2.

Then ~x1 − ~x2 = ~y2 − ~y1, so assumption (2) tells us that

~x1 − ~x2 = ~y2 − ~y1 = 0, and we have ~x1 = ~x2 and ~y1 = ~y2.
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For example, R3 = {
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For example, R3 = {
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t
t
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In finite dimensional vector spaces over R, we always have

Rn = L⊕ L⊥, but this isn’t our focus right now.

If ~x1, ~x2, . . . , ~xm is a basis of X, and ~y1, ~y2, . . . , ~yn is a basis of Y ,

then ~x1, ~x2, . . . , ~xm, ~y1, ~y2, . . . , ~yn is a basis of V . In particular,

dimV = dimX + dimY .

So, when we write vectors in the coordinates of this basis, the

X-entries come first and then the Y -entries. Similarly, if

V1 = X1 ⊕ Y1 and V2 = X2 ⊕ Y2, then linear transformations

V1 → V2 are given by block matrices.X1 → X2 Y1 → X2

X1 → Y2 Y1 → Y2

 .
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sum. Today, I’ll write � for that other construction, but people

normally call them both ⊕, and I’ll start doing that soon.



There is another, related but distinct, construction, called direct

sum. Today, I’ll write � for that other construction, but people

normally call them both ⊕, and I’ll start doing that soon.

Let X and Y be two vector spaces over the same field F . We define

the vector space X � Y as follows:

• The elements of X � Y are ordered pairs (~x, ~y) with ~x ∈ X and

~y ∈ Y .

• Addition is defined as (~x1, ~y1) + (~x2, ~y2) = (~x1 + ~x2, ~y1 + ~y2).

• Scalar multiplication is defined as c(~x1, ~y1) = (c~x1, c~y1).



There is another, related but distinct, construction, called direct

sum. Today, I’ll write � for that other construction, but people

normally call them both ⊕, and I’ll start doing that soon.

Let X and Y be two vector spaces over the same field F . We define

the vector space X � Y as follows:

• The elements of X � Y are ordered pairs (~x, ~y) with ~x ∈ X and

~y ∈ Y .

• Addition is defined as (~x1, ~y1) + (~x2, ~y2) = (~x1 + ~x2, ~y1 + ~y2).

• Scalar multiplication is defined as c(~x1, ~y1) = (c~x1, c~y1).

So, if X and Y are both subspaces of V and V = X ⊕ Y , then

X � Y is isomorphic to X ⊕ Y , by (~x, ~y) 7→ ~x + ~y. But we are

allowed to talk about X � Y without starting with a subspace that

X and Y are both contained in.
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subspace. Then there are many different subspaces Y with

V = X ⊕ Y .
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Finally, quotient spaces. Let V be a vector space and let X be a

subspace. Then there are many different subspaces Y with

V = X ⊕ Y .

Is there some natural way to talk about “the part of V which isn’t

X”?

One answer, for finite dimensional real vector spaces, is

X⊥ = {~y : 〈~y, ~x〉 = 0 for all ~x ∈ X}. But that isn’t the answer I am

talking about today.



Finally, quotient spaces. Let V be a vector space and let X be a

subspace. Then there are many different subspaces Y with

V = X ⊕ Y .

Is there some natural way to talk about “the part of V which isn’t

X”?

Define ~v1 ≡ ~v2 mod X if ~v1 − ~v2 ∈ X.



Define ~v1 ≡ ~v2 mod X if ~v1 − ~v2 ∈ X.

Check that

• If ~v1 ≡ ~v2 and ~w1 ≡ ~w2 then ~v1 + ~w1 ≡ ~v2 + ~w2.

• If ~v1 ≡ ~v2 and c is a scalar then c~v1 ≡ c~v2.

The elements of V/X are the equivalence classes for V/X, with

addition and scalar multiplication defined as above.



If V = X ⊕ Y , then Y −→ V −→ V/X is an isomorphism.
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Proof: Since Y → V and V → V/X are linear maps, the

composite map is linear; we need to check that it is bijective. In

other words, we need to check that, for each equivalence class

~z + X, there is exactly one ~y ∈ Y in ~z + X.
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If V = X ⊕ Y , then Y −→ V −→ V/X is an isomorphism.

Proof: Since Y → V and V → V/X are linear maps, the

composite map is linear; we need to check that it is bijective. In

other words, we need to check that, for each equivalence class

~z + X, there is exactly one ~y ∈ Y in ~z + X.

Saying that ~y is in ~z + X is the same as saying that there is some

~x ∈ X with ~y = ~z + ~x or, in other words, ~z = −~x + ~y. Since

V = X ⊕ Y , there is exactly one way to write ~z as ~x′ + ~y, and then

we take ~x = −~x′.
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Proof: Notice that, if ~v1 − ~v2 is in Ker(T ), then T (~v1) = T (~v2), so

we get a well defined function from V/Ker(T ) to W . Its image is

Image(T ). It is injective: If T (~v1) = T (~v2) then ~v1 − ~v2 is in

Ker(T ), so ~v1 and ~v2 are the same point of V/Ker(T ). And it is

easy to check that this map is linear.



If T : V →W is a linear map, then V/Ker(T ) is isomorphic to

Image(T ).

Proof: Notice that, if ~v1 − ~v2 is in Ker(T ), then T (~v1) = T (~v2), so

we get a well defined function from V/Ker(T ) to W . Its image is

Image(T ). It is injective: If T (~v1) = T (~v2) then ~v1 − ~v2 is in

Ker(T ), so ~v1 and ~v2 are the same point of V/Ker(T ). And it is

easy to check that this map is linear.

So we have a bijective linear map, and thus an isomorphism.



Topic Two: The rank nullity theorem, from two perspectives



The rank nullity theorem Let T : V →W be a linear

transformation, with dimV <∞. Then

dimV = dim Ker(T ) + dim Image(T ).



The rank nullity theorem Let T : V →W be a linear

transformation, with dimV <∞. Then

dimV = dim Ker(T ) + dim Image(T ).

First proof (matrices) Let’s assume W is also finite dimensional,

and identify V with Fm and W with Fn. So T is given by an

n×m matrix A. Then

dimV = number of columns of A

dim Ker(T ) = number of free columns of rref(A)

dim Image(T ) = number of pivot columns of rref(A)

#(columns) = #(free columns) + #(pivot columns).
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transformation, with dimV <∞. Then

dimV = dim Ker(T ) + dim Image(T ).

Second proof (abstract vector spaces) Choose a basis ~v1, ~v2,

. . . , ~vk for Ker(T ). Complete it to a basis ~v1, ~v2, . . . , ~vk, ~vk+1,

~vk+2, . . . , ~vm. (See Homework Problem 4.)

Then the equivalence classes of ~vk+1, ~vk+2, . . . , ~vn form a basis of

V/Ker(T ). Or, without talking about quotients, T (~vk+1), T (~vk+2),

. . . , T (~vm) is a basis of Image(T ).



In class, we proved the second way of framing this: T (~vk+1),

T (~vk+2), . . . , T (~vm) is a basis of Image(T ).

Linear independence: Suppose that we have a linear relation

ck+1T (~vk+1) + · · ·+ cmT (~vm) = ~0. Then

T (ck+1~vk+1 + · · ·+ cm~vm) = ~0, so ck+1~vk+1 + · · ·+ cm~vm is in

Ker(T ). Since ~v1, ~v2, . . . , ~vk is a basis of Ker(T ), we can write

ck+1~vk+1 + · · ·+ cm~vm = a1~v1 + · · ·+ ak~vk. Since the ~vi are linearly

independent, we have a1 = a2 = · · · = ak = ck+1 = · · · = cm = 0

and, in particular, ck+1 = · · · = cm = 0.

Spanning: Consider any vector ~w in Image(T ). Then there is

some ~v ∈ V with T (~v) = ~w. Since the ~vi are a basis of V , we can

write ~V = c1~v1 + · · ·+ ck~vk + ck+1~vk+1 + · · ·+ cm~vm. But then,

applying T , we have

~w = T (~v) = c1T (~v1) + · · ·+ ckT (~vk) + ck+1T (~vk+1) + · · ·+ cmT (~vm)

= ~0+·+~0+ck+1T (~vk+1)+· · ·+cmT (~vm) = ck+1T (~vk+1)+· · ·+cmT (~vm).



The rank nullity theorem Let T : V →W be a linear

transformation, with dimV <∞. Then

dimV = dim Ker(T ) + dim Image(T ).

Second proof (abstract vector spaces) Choose a basis ~v1, ~v2,

. . . , ~vk for Ker(T ). Complete it to a basis ~v1, ~v2, . . . , ~vk, ~vk+1,

~vk+2, . . . , ~vm. (See Homework Problem 4.)

Then the equivalence classes of ~vk+1, ~vk+2, . . . , ~vn form a basis of

V/Ker(T ). Or, without talking about quotients, T (~vk+1), T (~vk+2),

. . . , T (~vm) is a basis of Image(T ).

So dim Ker(T ) = k, dim Image(T ) = m− k and dimV = m.
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The rank nullity theorem Let T : V →W be a linear

transformation, with dimV <∞. Then

dimV = dim Ker(T ) + dim Image(T ).

What did we gain from this abstraction?

• Unimportant bonus: We didn’t assume that dimW <∞, or

even that W had a basis.

• Structural result: We get a basis of Image(T ) by completing a

basis of Ker(T ).

• Perhaps, some intuition?


