First topic: Direct sums and quotient spaces

We start with a homework problem:

9. Let W_1 and W_2 be subspaces of a vector space V such that $W_1 + W_2 = V$ and $W_1 \cap W_2 = \{0\}$. Prove that for each vector α in V there are unique vectors α_1 in W_1 and α_2 in W_2 such that $\alpha = \alpha_1 + \alpha_2$.

In a bit more detail: Let V be a vector space and let X and Y be subspaces. Show that the following are equivalent:

- 1. Every vector in V can be written in exactly one way as $\vec{x} + \vec{y}$ for $\vec{x} \in X$ and $\vec{y} \in Y$.
- 2. Every vector in V can be written as $\vec{x} + \vec{y}$ for $\vec{x} \in X$ and $\vec{y} \in Y$, and $X \cap Y = \{0\}$.

We start with a homework problem: Let V be a vector space and let X and Y be subspaces. Show that the following are equivalent:

- 1. Every vector in V can be written in exactly one way as $\vec{x} + \vec{y}$ for $\vec{x} \in X$ and $\vec{y} \in Y$.
- 2. Every vector in V can be written as $\vec{x} + \vec{y}$ for $\vec{x} \in X$ and $\vec{y} \in Y$, and $X \cap Y = \{0\}$.

Proof: In either case, we are assuming that every vector can be written as $\vec{x} + \vec{y}$.

(1) \implies (2): If \vec{u} is in $X \cap Y$, then $\vec{x} + \vec{y} = (\vec{x} + \vec{u}) + (\vec{y} - \vec{u})$. This would give multiple formulas for the same vector unless $\vec{u} = \vec{0}$.

(2) \implies (1): Suppose, to the contrary, that $\vec{x}_1 + \vec{y}_1 = \vec{x}_2 + \vec{y}_2$. Then $\vec{x}_1 - \vec{x}_2 = \vec{y}_2 - \vec{y}_1$, so assumption (2) tells us that $\vec{x}_1 - \vec{x}_2 = \vec{y}_2 - \vec{y}_1 = 0$, and we have $\vec{x}_1 = \vec{x}_2$ and $\vec{y}_1 = \vec{y}_2$. \Box In this case, we'll say that $V = X \oplus Y$. For example, $\mathbb{R}^3 = \{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : x + y + z = 0 \} \oplus \{ \begin{bmatrix} t \\ t \\ t \end{bmatrix} \}.$ In this case, we'll say that $V = X \oplus Y$.

For example,
$$\mathbb{R}^3 = \{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : x + y + z = 0 \} \oplus \{ \begin{bmatrix} t \\ t \\ t \end{bmatrix} \}.$$

In finite dimensional vector spaces over \mathbb{R} , we always have $\mathbb{R}^n = L \oplus L^{\perp}$, but this isn't our focus right now.

In this case, we'll say that $V = X \oplus Y$.

For example,
$$\mathbb{R}^3 = \{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : x + y + z = 0 \} \oplus \{ \begin{bmatrix} t \\ t \\ t \end{bmatrix} \}.$$

In finite dimensional vector spaces over \mathbb{R} , we always have $\mathbb{R}^n = L \oplus L^{\perp}$, but this isn't our focus right now.

If $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_m$ is a basis of X, and $\vec{y}_1, \vec{y}_2, \ldots, \vec{y}_n$ is a basis of Y, then $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_m, \vec{y}_1, \vec{y}_2, \ldots, \vec{y}_n$ is a basis of V. In particular, $\dim V = \dim X + \dim Y$. In this case, we'll say that $V = X \oplus Y$. For example, $\mathbb{R}^3 = \{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : x + y + z = 0 \} \oplus \{ \begin{bmatrix} t \\ t \\ t \end{bmatrix} \}$. In finite dimensional vector spaces over \mathbb{R} , we always have $\mathbb{R}^n = L \oplus L^{\perp}$, but this isn't our focus right now. If $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_m$ is a basis of X, and $\vec{y}_1, \vec{y}_2, \ldots, \vec{y}_n$ is a basis of Y, then $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_m, \vec{y}_1, \vec{y}_2, \ldots, \vec{y}_n$ is a basis of V. In particular, dim $V = \dim X + \dim Y$.

So, when we write vectors in the coordinates of this basis, the X-entries come first and then the Y-entries. Similarly, if $V_1 = X_1 \oplus Y_1$ and $V_2 = X_2 \oplus Y_2$, then linear transformations $V_1 \to V_2$ are given by block matrices.

$$\begin{bmatrix} X_1 \to X_2 & Y_1 \to X_2 \\ \hline X_1 \to Y_2 & Y_1 \to Y_2 \end{bmatrix}$$

There is another, related but distinct, construction, called direct sum. Today, I'll write \boxplus for that other construction, but people normally call them both \oplus , and I'll start doing that soon.

There is another, related but distinct, construction, called direct sum. Today, I'll write \boxplus for that other construction, but people normally call them both \oplus , and I'll start doing that soon.

Let X and Y be two vector spaces over the same field F. We define the vector space $X \boxplus Y$ as follows:

- The elements of $X \boxplus Y$ are ordered pairs (\vec{x}, \vec{y}) with $\vec{x} \in X$ and $\vec{y} \in Y$.
- Addition is defined as $(\vec{x}_1, \vec{y}_1) + (\vec{x}_2, \vec{y}_2) = (\vec{x}_1 + \vec{x}_2, \vec{y}_1 + \vec{y}_2).$
- Scalar multiplication is defined as $c(\vec{x}_1, \vec{y}_1) = (c\vec{x}_1, c\vec{y}_1)$.

There is another, related but distinct, construction, called direct sum. Today, I'll write \boxplus for that other construction, but people normally call them both \oplus , and I'll start doing that soon.

Let X and Y be two vector spaces over the same field F. We define the vector space $X \boxplus Y$ as follows:

- The elements of $X \boxplus Y$ are ordered pairs (\vec{x}, \vec{y}) with $\vec{x} \in X$ and $\vec{y} \in Y$.
- Addition is defined as $(\vec{x}_1, \vec{y}_1) + (\vec{x}_2, \vec{y}_2) = (\vec{x}_1 + \vec{x}_2, \vec{y}_1 + \vec{y}_2).$
- Scalar multiplication is defined as $c(\vec{x}_1, \vec{y}_1) = (c\vec{x}_1, c\vec{y}_1)$.

So, if X and Y are both subspaces of V and $V = X \oplus Y$, then $X \boxplus Y$ is isomorphic to $X \oplus Y$, by $(\vec{x}, \vec{y}) \mapsto \vec{x} + \vec{y}$. But we are allowed to talk about $X \boxplus Y$ without starting with a subspace that X and Y are both contained in.

Is there some natural way to talk about "the part of V which isn't X"?

Is there some natural way to talk about "the part of V which isn't X"?

One answer, for finite dimensional real vector spaces, is $X^{\perp} = \{\vec{y} : \langle \vec{y}, \vec{x} \rangle = 0 \text{ for all } \vec{x} \in X\}$. But that isn't the answer I am talking about today.

Is there some natural way to talk about "the part of V which isn't X"?

Define $\vec{v_1} \equiv \vec{v_2} \mod X$ if $\vec{v_1} - \vec{v_2} \in X$.

Check that

- If $\vec{v}_1 \equiv \vec{v}_2$ and $\vec{w}_1 \equiv \vec{w}_2$ then $\vec{v}_1 + \vec{w}_1 \equiv \vec{v}_2 + \vec{w}_2$.
- If $\vec{v}_1 \equiv \vec{v}_2$ and c is a scalar then $c\vec{v}_1 \equiv c\vec{v}_2$.

The elements of V/X are the equivalence classes for V/X, with addition and scalar multiplication defined as above.

If $V = X \oplus Y$, then $Y \longrightarrow V \longrightarrow V/X$ is an isomorphism.

Proof: Since $Y \to V$ and $V \to V/X$ are linear maps, the composite map is linear; we need to check that it is bijective. In other words, we need to check that, for each equivalence class $\vec{z} + X$, there is exactly one $\vec{y} \in Y$ in $\vec{z} + X$.

If $V = X \oplus Y$, then $Y \longrightarrow V \longrightarrow V/X$ is an isomorphism.

Proof: Since $Y \to V$ and $V \to V/X$ are linear maps, the composite map is linear; we need to check that it is bijective. In other words, we need to check that, for each equivalence class $\vec{z} + X$, there is exactly one $\vec{y} \in Y$ in $\vec{z} + X$.

Saying that \vec{y} is in $\vec{z} + X$ is the same as saying that there is some $\vec{x} \in X$ with $\vec{y} = \vec{z} + \vec{x}$ or, in other words, $\vec{z} = -\vec{x} + \vec{y}$.

If $V = X \oplus Y$, then $Y \longrightarrow V \longrightarrow V/X$ is an isomorphism.

Proof: Since $Y \to V$ and $V \to V/X$ are linear maps, the composite map is linear; we need to check that it is bijective. In other words, we need to check that, for each equivalence class $\vec{z} + X$, there is exactly one $\vec{y} \in Y$ in $\vec{z} + X$.

Saying that \vec{y} is in $\vec{z} + X$ is the same as saying that there is some $\vec{x} \in X$ with $\vec{y} = \vec{z} + \vec{x}$ or, in other words, $\vec{z} = -\vec{x} + \vec{y}$. Since $V = X \oplus Y$, there is exactly one way to write \vec{z} as $\vec{x}' + \vec{y}$, and then we take $\vec{x} = -\vec{x}'$. \Box

Proof: Notice that, if $\vec{v}_1 - \vec{v}_2$ is in Ker(T), then $T(\vec{v}_1) = T(\vec{v}_2)$, so we get a well defined function from V/Ker(T) to W.

Proof: Notice that, if $\vec{v}_1 - \vec{v}_2$ is in Ker(T), then $T(\vec{v}_1) = T(\vec{v}_2)$, so we get a well defined function from V/Ker(T) to W. Its image is Image(T).

Proof: Notice that, if $\vec{v}_1 - \vec{v}_2$ is in Ker(T), then $T(\vec{v}_1) = T(\vec{v}_2)$, so we get a well defined function from V/Ker(T) to W. Its image is Image(T). It is injective: If $T(\vec{v}_1) = T(\vec{v}_2)$ then $\vec{v}_1 - \vec{v}_2$ is in Ker(T), so \vec{v}_1 and \vec{v}_2 are the same point of V/Ker(T). And it is easy to check that this map is linear.

Proof: Notice that, if $\vec{v}_1 - \vec{v}_2$ is in Ker(T), then $T(\vec{v}_1) = T(\vec{v}_2)$, so we get a well defined function from V/Ker(T) to W. Its image is Image(T). It is injective: If $T(\vec{v}_1) = T(\vec{v}_2)$ then $\vec{v}_1 - \vec{v}_2$ is in Ker(T), so \vec{v}_1 and \vec{v}_2 are the same point of V/Ker(T). And it is easy to check that this map is linear.

So we have a bijective linear map, and thus an isomorphism. \Box

Topic Two: The rank nullity theorem, from two perspectives

 $\dim V = \dim \operatorname{Ker}(T) + \dim \operatorname{Image}(T).$

 $\dim V = \dim \operatorname{Ker}(T) + \dim \operatorname{Image}(T).$

First proof (matrices) Let's assume W is also finite dimensional, and identify V with F^m and W with F^n . So T is given by an $n \times m$ matrix A. Then

 $\dim V = \text{number of columns of } A$ $\dim \operatorname{Ker}(T) = \text{number of free columns of } \operatorname{rref}(A)$ $\dim \operatorname{Image}(T) = \text{number of pivot columns of } \operatorname{rref}(A)$

 $#(\text{columns}) = #(\text{free columns}) + #(\text{pivot columns}). \square$

 $\dim V = \dim \operatorname{Ker}(T) + \dim \operatorname{Image}(T).$

Second proof (abstract vector spaces) Choose a basis $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$ for Ker(T).

 $\dim V = \dim \operatorname{Ker}(T) + \dim \operatorname{Image}(T).$

Second proof (abstract vector spaces) Choose a basis $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$ for Ker(T). Complete it to a basis $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k, \vec{v}_{k+1}, \vec{v}_{k+2}, \ldots, \vec{v}_m$. (See Homework Problem 4.)

 $\dim V = \dim \operatorname{Ker}(T) + \dim \operatorname{Image}(T).$

Second proof (abstract vector spaces) Choose a basis $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$ for Ker(T). Complete it to a basis $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k, \vec{v}_{k+1}, \vec{v}_{k+2}, \ldots, \vec{v}_m$. (See Homework Problem 4.)

 $\dim V = \dim \operatorname{Ker}(T) + \dim \operatorname{Image}(T).$

Second proof (abstract vector spaces) Choose a basis $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$ for Ker(T). Complete it to a basis $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k, \vec{v}_{k+1}, \vec{v}_{k+2}, \ldots, \vec{v}_m$. (See Homework Problem 4.)

Then the equivalence classes of \vec{v}_{k+1} , \vec{v}_{k+2} , ..., \vec{v}_n form a basis of V/Ker(T). Or, without talking about quotients, $T(\vec{v}_{k+1})$, $T(\vec{v}_{k+2})$, ..., $T(\vec{v}_m)$ is a basis of Image(T).

In class, we proved the second way of framing this: $T(\vec{v}_{k+1})$, $T(\vec{v}_{k+2}), \ldots, T(\vec{v}_m)$ is a basis of Image(T).

Linear independence: Suppose that we have a linear relation $c_{k+1}T(\vec{v}_{k+1}) + \cdots + c_mT(\vec{v}_m) = \vec{0}$. Then $T(c_{k+1}\vec{v}_{k+1} + \cdots + c_m\vec{v}_m) = \vec{0}$, so $c_{k+1}\vec{v}_{k+1} + \cdots + c_m\vec{v}_m$ is in Ker(T). Since $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$ is a basis of Ker(T), we can write $c_{k+1}\vec{v}_{k+1} + \cdots + c_m\vec{v}_m = a_1\vec{v}_1 + \cdots + a_k\vec{v}_k$. Since the \vec{v}_i are linearly independent, we have $a_1 = a_2 = \cdots = a_k = c_{k+1} = \cdots = c_m = 0$ and, in particular, $c_{k+1} = \cdots = c_m = 0$.

Spanning: Consider any vector \vec{w} in Image(T). Then there is some $\vec{v} \in V$ with $T(\vec{v}) = \vec{w}$. Since the \vec{v}_i are a basis of V, we can write $\vec{V} = c_1\vec{v}_1 + \cdots + c_k\vec{v}_k + c_{k+1}\vec{v}_{k+1} + \cdots + c_m\vec{v}_m$. But then, applying T, we have

$$\vec{w} = T(\vec{v}) = c_1 T(\vec{v}_1) + \dots + c_k T(\vec{v}_k) + c_{k+1} T(\vec{v}_{k+1}) + \dots + c_m T(\vec{v}_m)$$
$$= \vec{0} + \dots + \vec{0} + c_{k+1} T(\vec{v}_{k+1}) + \dots + c_m T(\vec{v}_m) = c_{k+1} T(\vec{v}_{k+1}) + \dots + c_m T(\vec{v}_m)$$

 $\dim V = \dim \operatorname{Ker}(T) + \dim \operatorname{Image}(T).$

Second proof (abstract vector spaces) Choose a basis $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$ for Ker(T). Complete it to a basis $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k, \vec{v}_{k+1}, \vec{v}_{k+2}, \ldots, \vec{v}_m$. (See Homework Problem 4.)

Then the equivalence classes of \vec{v}_{k+1} , \vec{v}_{k+2} , ..., \vec{v}_n form a basis of V/Ker(T). Or, without talking about quotients, $T(\vec{v}_{k+1})$, $T(\vec{v}_{k+2})$, ..., $T(\vec{v}_m)$ is a basis of Image(T).

So dim $\operatorname{Ker}(T) = k$, dim $\operatorname{Image}(T) = m - k$ and dim V = m. \Box

 $\dim V = \dim \operatorname{Ker}(T) + \dim \operatorname{Image}(T).$

What did we gain from this abstraction?

 $\dim V = \dim \operatorname{Ker}(T) + \dim \operatorname{Image}(T).$

What did we gain from this abstraction?

• Unimportant bonus: We didn't assume that dim $W < \infty$, or even that W had a basis.

 $\dim V = \dim \operatorname{Ker}(T) + \dim \operatorname{Image}(T).$

What did we gain from this abstraction?

- Unimportant bonus: We didn't assume that dim $W < \infty$, or even that W had a basis.
- Structural result: We get a basis of Image(T) by completing a basis of Ker(T).

 $\dim V = \dim \operatorname{Ker}(T) + \dim \operatorname{Image}(T).$

What did we gain from this abstraction?

- Unimportant bonus: We didn't assume that dim $W < \infty$, or even that W had a basis.
- Structural result: We get a basis of Image(T) by completing a basis of Ker(T).
- Perhaps, some intuition?