First topic: Direct sums and quotient spaces




We start with a homework problem:

In a bit more detail: Let V' be a vector space and let X and Y be
subspaces. Show that the following are equivalent:

1. Every vector in V' can be written in exactly one way as  + ¢
forre X and yeY.

. Every vector in V' can be writtenas ¥+ gy for¥ € X and y €Y,
and X NY = {0}.




We start with a homework problem: Let V' be a vector space and
let X and Y be subspaces. Show that the following are equivalent:

1. Every vector in V can be written in exactly one way as & + ¢
forre X andyeY.

. Every vector in V' can be written as ¥ +y forr € X andy €Y,
and X NY = {0}.

Proof: In either case, we are assuming that every vector can be

written as T + /.

(2) = (1): Suppose, to the contrary, that 1 + 77 = ©2 + ¥a.

Then ¥1 — @2 = yo — 41, so assumption (2) tells us that

fl—fzzgg—glz(), andwehaveflzfg andglzgg. L]
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In this case, we'll say that V =X @Y.
For example, R? = {{Q Tty +z 20}@{[ﬂ}

In finite dimensional vector spaces over R, we always have
R™ = L & L+, but this isn’t our focus right now.

If 1, o, ..., T,, is a basis of X, and 41, ¥, ..., ¥, is a basis of Y,
then X1, To, ..., T, Y1, Y2, ..., Yy iS a basis of V. In particular,

dimV =dim X +dimY.

So, when we write vectors in the coordinates of this basis, the
X-entries come first and then the Y-entries. Similarly, if
Vi=X19Y; and V5 = X5 ¢ Y5, then linear transformations
Vi — V5 are given by block matrices.

X1—>X2‘Y1—>X2
X1—>Y2‘Y1%Y2 .
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sum. Today, I'll write H for that other construction, but people

normally call them both &, and I'll start doing that soon.
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Let X and Y be two vector spaces over the same field F'. We define
the vector space X HY as follows:

e The elements of X HY are ordered pairs (&, %) with £ € X and
yev.

e Addition is defined as (flygl) + (fQ,gQ) = (fl -+ fg,gjl -+ gg)

e Scalar multiplication is defined as ¢(Z1,41) = (cZ1, cyr).




There is another, related but distinct, construction, called direct
sum. Today, I'll write H for that other construction, but people
normally call them both &, and I'll start doing that soon.

Let X and Y be two vector spaces over the same field F'. We define
the vector space X HY as follows:

e The elements of X HY are ordered pairs (&, %) with £ € X and
yev.

e Addition is defined as (flygl) + (fQ,gQ) = (fl -+ fg,gjl -+ 372)

e Scalar multiplication is defined as ¢(Z1,41) = (cZ1, cyr).

So, if X and Y are both subspaces of V and V = X @ Y, then

X HY is isomorphic to X @Y, by (Z,y) — ¥+ . But we are
allowed to talk about X HY without starting with a subspace that
X and Y are both contained in.
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Finally, quotient spaces. Let V' be a vector space and let X be a

subspace. Then there are many different subspaces Y with
V=Xa&Y.

Is there some natural way to talk about “the part of V which isn’t
X7

One answer, for finite dimensional real vector spaces, is
X+ ={7:(,%) =0 for all ¥ € X}. But that isn’t the answer I am

talking about today.




Finally, quotient spaces. Let V' be a vector space and let X be a

subspace. Then there are many different subspaces Y with
V=Xa&Y.

Is there some natural way to talk about “the part of V which isn’t
X7

Define v7 = v mod X if v7 — v € X.




Check that
o If v7 = U5 and w; = Wy then v; + Wi = Us + Wo.

o If U1 = v5 and c is a scalar then cv; = cvs.

The elements of V/X are the equivalence classes for V/ X, with

addition and scalar multiplication defined as above.




fV=X®Y,thenY — V — V/X is an isomorphism.
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composite map is linear; we need to check that it is bijective. In
other words, we need to check that, for each equivalence class

Z + X, there is exactly one y € Y in 7+ X.
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x € X with y = 24 & or, in other words, 2= —7 + v.




fV=X®Y,thenY — V — V/X is an isomorphism.

Proof: Since Y — V and V — V/X are linear maps, the
composite map is linear; we need to check that it is bijective. In
other words, we need to check that, for each equivalence class

Z + X, there is exactly one y € Y in 7+ X.

Saying that ¢ is in 2’4+ X is the same as saying that there is some
Z € X with ¥ = Z+ ¥ or, in other words, 2= —Z + . Since

V =X @Y, there is exactly one way to write 2 as @’ + v/, and then
we take ¥ = —2/. [




If T:V — W is a linear map, then V/Ker(T) is isomorphic to
Image(T).
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Image(T). It is injective: If T'(v1) = T'(¥3) then ¥; — U is in
Ker(T), so v7 and ¥y are the same point of V/Ker(T'). And it is

easy to check that this map is linear.




If T:V — W is a linear map, then V/Ker(T) is isomorphic to
Image(T).

Proof: Notice that, if v73 — ¥ is in Ker(T'), then T'(¢;) = T'(¥2), so
we get a well defined function from V/Ker(T') to W. Its image is
Image(T). It is injective: If T'(v1) = T'(¥3) then ¥; — U is in
Ker(T), so v7 and ¥y are the same point of V/Ker(T'). And it is

easy to check that this map is linear.

So we have a bijective linear map, and thus an isomorphism. []




Topic Two: The rank nullity theorem, from two perspectives




The rank nullity theorem Let T : V — W be a linear
transformation, with dim V < oo. Then

dim V' = dim Ker(T") 4+ dim Image(T).




The rank nullity theorem Let T : V — W be a linear

transformation, with dim V < oo. Then

dim V' = dim Ker(T") 4+ dim Image(T).

First proof (matrices) Let’s assume W is also finite dimensional,
and identify V' with F" and W with F™. So T’ is given by an

n X m matrix A. Then

dim V' number of columns of A
dim Ker(T) number of free columns of rref(A)

dim Image(T) number of pivot columns of rref(A)

#(columns) = #(free columns) + #(pivot columns). []
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The rank nullity theorem Let T : V — W be a linear
transformation, with dim V < oo. Then

dim V' = dim Ker(T") 4+ dim Image(T).

Second proof (abstract vector spaces) Choose a basis 77, ¥s,

..., U for Ker(T). Complete it to a basis v, U2, ..., Uk, Ukt1,

Uka2, - -, Um- (See Homework Problem 4.)

Then the equivalence classes of U1, Ukio, ..., U, form a basis of
V/Ker(T). Or, without talking about quotients, T(Ux11), T (Ux12),
..., T'(V,,) is a basis of Image(T).




In class, we proved the second way of framing this: T (Uj11),
T(Uks2), ..., T(Vy) is a basis of Image(T).

Linear independence: Suppose that we have a linear relation
a1 T (Tpgr) + - - - + e T(T) = 0. Then

T(Ck_|_1?7k+1 + -+ Cm’Um) = 6, SO Ck41Uk+1 + -+ 4 CmUp, is In
Ker(T). Since v, ¥a, ..., Uk is a basis of Ker(T'), we can write
Chi1Uks1 + -+ CmUm = a101 + - - - + apUg. Since the v; are linearly
independent, we have a1 = as =+ =axr =cgpy1 ==y =0
and, in particular, cx41 =+ = ¢, = 0.

Spanning: Consider any vector w in Image(7T"). Then there is

some ¢ € V with T'(¢) = . Since the ¥; are a basis of V', we can

write V =101 + - + cpUk + Cr1Uga1 + -+ - + CmUp,. But then,
applying 1T', we have

T(V) =c1T (V1) + -+ cpT(Uk) + cor1 T (V1) + - + T (Um)
6+'+6+Ck+1T(17k+1)+' y +CmT(?7m) = Ck_|_1T(’l7k_|_1)—|—' . —|—CmT(




The rank nullity theorem Let T : V — W be a linear
transformation, with dim V < oo. Then

dim V' = dim Ker(T") 4+ dim Image(T).

Second proof (abstract vector spaces) Choose a basis 77, ¥s,
..., U for Ker(T). Complete it to a basis v, U2, ..., Uk, Ukt1,

Uka2, - -, Um- (See Homework Problem 4.)

Then the equivalence classes of U1, Ukio, ..., U, form a basis of
V/Ker(T). Or, without talking about quotients, T(Ux11), T (Ux12),

..., T'(V,,) is a basis of Image(T).
So dim Ker(T') = k, dim Image(T) = m — k and dimV = m. [J
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The rank nullity theorem Let T : V — W be a linear
transformation, with dim V < oo. Then

dim V' = dim Ker(T") 4+ dim Image(T).
What did we gain from this abstraction?

e Unimportant bonus: We didn’t assume that dim W < oo, or
even that W had a basis.

e Structural result: We get a basis of Image(T") by completing a
basis of Ker(T').

e Perhaps, some intuition?




