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f(a~e1+b~e2+c~e3) = af(~e1)+bf(~e2)+cf(~e3) = a·2+b·3+c·5 = 2a+3b+5c.

In general, a linear map f : Fn → F is determined uniquely by its

value on the basis vectors e1, e2, . . . , en.



Review of dual spaces

If V is a vector space, then the dual space V ∗ is Hom(V, F ). If e1,

e2, . . . is a basis of V , then e∗i : V → F is the linear function where

e∗i (~v) is the coefficient of ei in ~v.

If dimV is finite, then the e∗i are a basis of V ∗.

So, for our map f
([

a
b
c

])
= 2a + 3b + 5c on the previous slide, we

have f = 2e∗1 + 3e∗2 + 5e∗3. It is often helpful to think of ordinary

vectors as column vectors, and dual vectors as row vectors.

So, if dimV = n <∞, then dimV ∗ = n as well.
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So the matrix of F is the transpose matrix, [ 1 3 5
2 4 6 ].



In general, suppose we have bases e1, e2, . . . , em of V and f1, f2,

. . . , fn of W . Let e∗i and f∗
j be the dual bases of V ∗ and W ∗.

Then, if A is the matrix of F : V →W , then AT is the matrix of

F ∗ : W ∗ → V ∗.



Time for you to talk!

Problem 1 If F : U → V and G : V →W are linear maps, then

(GF )∗ = F ∗G∗.

Problem 2 If F : V →W is surjective, then F ∗ : W ∗ → V ∗ is

injective.

Problem 3 If V and W are finite dimensional, and F : V →W is

injective, then F ∗ : W ∗ → V ∗ is surjective. (This one is harder.)


