Dual space and transpose

Wake up problem: Let $f : \mathbb{R}^3 \to \mathbb{R}$ be a linear map, and let $\vec{e_1}$, $\vec{e_2}$, $\vec{e_3}$ be the standard basis of \mathbb{R}^3 . Suppose that $f(e_1) = 2$, $f(e_2) = 3$ and $f(e_3) = 5$. What is

 $f\left(\left[\begin{smallmatrix}a\\b\\c\end{smallmatrix}\right]\right)?$

Wake up problem: Let $f : \mathbb{R}^3 \to \mathbb{R}$ be a linear map, and let $\vec{e_1}$, $\vec{e_2}$, $\vec{e_3}$ be the standard basis of \mathbb{R}^3 . Suppose that $f(e_1) = 2$, $f(e_2) = 3$ and $f(e_3) = 5$. What is

 $f\left(\left[\begin{smallmatrix}a\\b\\c\end{smallmatrix}\right]\right)?$

 $f(a\vec{e_1} + b\vec{e_2} + c\vec{e_3}) = af(\vec{e_1}) + bf(\vec{e_2}) + cf(\vec{e_3}) = a \cdot 2 + b \cdot 3 + c \cdot 5 = 2a + 3b + 5c$

Wake up problem: Let $f : \mathbb{R}^3 \to \mathbb{R}$ be a linear map, and let $\vec{e_1}$, $\vec{e_2}$, $\vec{e_3}$ be the standard basis of \mathbb{R}^3 . Suppose that $f(e_1) = 2$, $f(e_2) = 3$ and $f(e_3) = 5$. What is

 $f\left(\left[\begin{smallmatrix}a\\b\\c\end{smallmatrix}\right]\right)?$

 $f(a\vec{e_1} + b\vec{e_2} + c\vec{e_3}) = af(\vec{e_1}) + bf(\vec{e_2}) + cf(\vec{e_3}) = a \cdot 2 + b \cdot 3 + c \cdot 5 = 2a + 3b + 5c$

In general, a linear map $f: F^n \to F$ is determined uniquely by its value on the basis vectors e_1, e_2, \ldots, e_n .

If V is a vector space, then the dual space V^* is $\operatorname{Hom}(V, F)$. If e_1 , e_2, \ldots is a basis of V, then $e_i^* : V \to F$ is the linear function where $e_i^*(\vec{v})$ is the coefficient of e_i in \vec{v} .

If dim V is finite, then the e_i^* are a basis of V^* .

So, for our map $f\left(\begin{bmatrix}a\\b\\c\end{bmatrix}\right) = 2a + 3b + 5c$ on the previous slide, we have $f = 2e_1^* + 3e_2^* + 5e_3^*$. It is often helpful to think of ordinary vectors as column vectors, and dual vectors as row vectors.

So, if dim $V = n < \infty$, then dim $V^* = n$ as well.

 $F^*(w^*)(\vec{v}) := w^*(F(\vec{v})).$

 $F^*(w^*)(\vec{v}) := w^*(F(\vec{v})).$

Example: Let $V = \mathbb{R}^2$ and $W = \mathbb{R}^3$. Let $F = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$.

 $F^*(w^*)(\vec{v}) := w^*(F(\vec{v})).$

Example: Let $V = \mathbb{R}^2$ and $W = \mathbb{R}^3$. Let $F = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$.

We have $F(e_1) = f_1 + 3f_2 + 5f_3$ and $F(e_2) = 2f_1 + 4f_2 + 6f_3$.

 $F^*(w^*)(\vec{v}) := w^*(F(\vec{v})).$

Example: Let $V = \mathbb{R}^2$ and $W = \mathbb{R}^3$. Let $F = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$.

We have $F(e_1) = f_1 + 3f_2 + 5f_3$ and $F(e_2) = 2f_1 + 4f_2 + 6f_3$. What is $F^*(f_1^*)$?

 $F^*(w^*)(\vec{v}) := w^*(F(\vec{v})).$

Example: Let $V = \mathbb{R}^2$ and $W = \mathbb{R}^3$. Let $F = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$.

We have $F(e_1) = f_1 + 3f_2 + 5f_3$ and $F(e_2) = 2f_1 + 4f_2 + 6f_3$.

$$F(f_1^*)(e_1) = f_1^*(F(e_1)) = f_1^*(f_1 + 3f_2 + 5f_3) = 1.$$

$$F(f_1^*)(e_2) = f_1^*(F(e_2)) = f_1^*(2f_1 + 4f_2 + 6f_3) = 2.$$

$$F(f_1^*) = e_1^* + 2e_2^*.$$

 $F^*(w^*)(\vec{v}) := w^*(F(\vec{v})).$

Example: Let $V = \mathbb{R}^2$ and $W = \mathbb{R}^3$. Let $F = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$.

We have $F(e_1) = f_1 + 3f_2 + 5f_3$ and $F(e_2) = 2f_1 + 4f_2 + 6f_3$.

$$F(f_1^*)(e_1) = f_1^*(F(e_1)) = f_1^*(f_1 + 3f_2 + 5f_3) = 1.$$

$$F(f_1^*)(e_2) = f_1^*(F(e_2)) = f_1^*(2f_1 + 4f_2 + 6f_3) = 2.$$

More generally,

 $F(f_1^*) = e_1^* + 2e_2^*$ $F(f_2^*) = 3e_1^* + 4e_2^*$ $F(f_3^*) = 5e_1^* + 6e_2^*.$

 $F^*(w^*)(\vec{v}) := w^*(F(\vec{v})).$

Example: Let $V = \mathbb{R}^2$ and $W = \mathbb{R}^3$. Let $F = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$.

We have $F(e_1) = f_1 + 3f_2 + 5f_3$ and $F(e_2) = 2f_1 + 4f_2 + 6f_3$.

$$F^*(f_1^*)(e_1) = f_1^*(F^*(e_1)) = f_1^*(f_1 + 3f_2 + 5f_3) = 1.$$

$$F^*(f_1^*)(e_2) = f_1^*(F^*(e_2)) = f_1^*(2f_1 + 4f_2 + 6f_3) = 2.$$

More generally,

 $F^*(f_1^*) = e_1^* + 2e_2^*$ $F^*(f_2^*) = 3e_1^* + 4e_2^*$ $F^*(f_3^*) = 5e_1^* + 6e_2^*.$

 $F^*(w^*)(\vec{v}) := w^*(F(\vec{v})).$

Example: Let $V = \mathbb{R}^2$ and $W = \mathbb{R}^3$. Let $F = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$.

We have $F^*(e_1) = f_1 + 3f_2 + 5f_3$ and $F^*(e_2) = 2f_1 + 4f_2 + 6f_3$.

$$F^*(f_1^*)(e_1) = f_1^*(F^*(e_1)) = f_1^*(f_1 + 3f_2 + 5f_3) = 1.$$

$$F^*(f_1^*)(e_2) = f_1^*(F^*(e_2)) = f_1^*(2f_1 + 4f_2 + 6f_3) = 2.$$

More generally,

 $F^*(f_1^*) = e_1^* + 2e_2^*$ $F^*(f_2^*) = 3e_1^* + 4e_2^*$ $F^*(f_3^*) = 5e_1^* + 6e_2^*.$ So the matrix of F is the transpose matrix, $\begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}$. In general, suppose we have bases e_1, e_2, \ldots, e_m of V and f_1, f_2, \ldots, f_n of W. Let e_i^* and f_j^* be the dual bases of V^* and W^* . Then, if A is the matrix of $F: V \to W$, then A^T is the matrix of $F^*: W^* \to V^*$. Time for you to talk!

Problem 1 If $F: U \to V$ and $G: V \to W$ are linear maps, then $(GF)^* = F^*G^*$.

Problem 2 If $F: V \to W$ is surjective, then $F^*: W^* \to V^*$ is injective.

Problem 3 If V and W are finite dimensional, and $F: V \to W$ is injective, then $F^*: W^* \to V^*$ is surjective. (This one is harder.)