
More on transposes, orthogonal complement



Theorem The rank of a matrix equals the rank of its transpose.

Recall that rank(A) = dim Image(A).

We proved this before using row and column reduction; let’s give a

new proof without coordinates.
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Theorem The rank of a matrix equals the rank of its transpose.

Recall that rank(A) = dim Image(A).

We can factor F as

V
surjective−→ Image(F )

injective−→ W.

So we can factor F ∗ as

V ∗
injective←− Image(F )∗

surjective←− W ∗.

But then the image of Image(F )∗ in V ∗ must be Image(F ∗)! We

have an isomorphism Image(F )∗ ∼= Image(F ∗).

So rank(F ) = dim Image(F ) = dim Image(F )∗ = dim Image(F ∗) =

rank(F ∗).



Orthogonal complement



We can use the dual to build something like orthogonal

complement without working over the field R. Let V be a vector

space and let W be a subspace of V . Then we set W⊥ to be the

subspace of V ∗ defined by

W⊥ = {v∗ ∈ V ∗ : v∗ is 0 on W}.

In other words, W⊥ = Ker(V ∗ →W ∗). (Your book uses W ◦.)
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complement without working over the field R. Let V be a vector

space and let W be a subspace of V . Then we set W⊥ to be the

subspace of V ∗ defined by

W⊥ = {v∗ ∈ V ∗ : v∗ is 0 on W}.

In other words, W⊥ = Ker(V ∗ →W ∗).

Wake up question: If dimV is finite, then we have

dimW⊥ = dimV − dimW .

Proof: Since W → V is injective, the map V ∗ →W ∗ is surjective.

By rank-nullity, dim Ker(V ∗ →W ∗) = dimV ∗ − dim Image(V ∗ →
W ∗) = dimV ∗ − dimW ∗ = dimV − dimW .



Time for you to talk!

Problem 1 Let X ⊆ Y ⊆ V . Show that X⊥ ⊇ Y ⊥ (these are both

subspaces of V ∗).

Problem 2 Let W ⊂ V be vector spaces. Show that (W⊥)⊥ ⊇W .

This one is a bit broken: (W⊥)⊥ is in V ∗∗, not in V . So this only makes sense if we

identify V and V ∗∗, which only works in finite dimensions, or if we ask that the natural

map V → V ∗∗ carries W into (W⊥)⊥, which is true.

Problem 3 Let W ⊂ V be finite dimensional vector spaces. Show

that (W⊥)⊥ = W .

Problem 4 Let X and Y be subspaces of V . Show that

(X + Y )⊥ = X⊥ ∩ Y ⊥. If V is finite dimensional, show also that

(X ∩ Y )⊥ = X⊥ + Y ⊥.

Problem 5 Let V and W be vector spaces and let A : V →W be

a linear transformation. Then Ker(A∗) = Im(A)⊥. If V and W are

finite dimensional, we also have Im(A∗) = Ker(A)⊥.


