More on transposes, orthogonal complement

We proved this before using row and column reduction; let's give a new proof without coordinates.

We can factor F as

$$
V \stackrel{\text{surjective}}{\longrightarrow} \text{Image}(F) \stackrel{\text{injective}}{\longrightarrow} W.
$$

```
We can factor F as
```

$$
V \stackrel{\text{surjective}}{\longrightarrow} \text{Image}(F) \stackrel{\text{injective}}{\longrightarrow} W.
$$

```
So we can factor F^* as
```

$$
V^* \overset{\text{injective}}{\longleftarrow} \text{Image}(F)^* \overset{\text{surjective}}{\longleftarrow} W^*.
$$

```
We can factor F as
```

$$
V \stackrel{\text{surjective}}{\longrightarrow} \text{Image}(F) \stackrel{\text{injective}}{\longrightarrow} W.
$$

So we can factor F^* as

$$
V^* \overset{\text{injective}}{\longleftarrow} \text{Image}(F)^* \overset{\text{surjective}}{\longleftarrow} W^*.
$$

But then the image of $\text{Image}(F)^*$ in V^* must be $\text{Image}(F^*)!$. We have an isomorphism $\text{Image}(F)^* \cong \text{Image}(F^*)$.

```
We can factor F as
```

$$
V \stackrel{\text{surjective}}{\longrightarrow} \text{Image}(F) \stackrel{\text{injective}}{\longrightarrow} W.
$$

So we can factor F^* as

$$
V^* \overset{\text{injective}}{\longleftarrow} \text{Image}(F)^* \overset{\text{surjective}}{\longleftarrow} W^*.
$$

But then the image of $\text{Image}(F)^*$ in V^* must be $\text{Image}(F^*)!$. We have an isomorphism $\text{Image}(F)^* \cong \text{Image}(F^*)$.

So rank $(F) = \dim \text{Image}(F) = \dim \text{Image}(F)^* = \dim \text{Image}(F^*) =$ $rank(F^*).$

Orthogonal complement

We can use the dual to build something like orthogonal complement without working over the field \mathbb{R} . Let V be a vector space and let W be a subspace of V. Then we set W^{\perp} to be the subspace of V^* defined by

$$
W^{\perp} = \{v^* \in V^* : v^* \text{ is } 0 \text{ on } W\}.
$$

In other words, $W^{\perp} = \text{Ker}(V^* \to W^*)$. (Your book uses W° .)

We can use the dual to build something like orthogonal complement without working over the field \mathbb{R} . Let V be a vector space and let W be a subspace of V. Then we set W^{\perp} to be the subspace of V^* defined by

$$
W^{\perp} = \{ v^* \in V^* : v^* \text{ is 0 on } W \}.
$$

In other words, $W^{\perp} = \text{Ker}(V^* \to W^*)$.

Wake up question: If $\dim V$ is finite, then we have $\dim W^{\perp} = \dim V - \dim W.$

We can use the dual to build something like orthogonal complement without working over the field \mathbb{R} . Let V be a vector space and let W be a subspace of V. Then we set W^{\perp} to be the subspace of V^* defined by

$$
W^{\perp} = \{ v^* \in V^* : v^* \text{ is 0 on } W \}.
$$

In other words, $W^{\perp} = \text{Ker}(V^* \to W^*)$.

Wake up question: If dim V is finite, then we have $\dim W^{\perp} = \dim V - \dim W.$

Proof: Since $W \to V$ is injective, the map $V^* \to W^*$ is surjective. By rank-nullity, dim $\text{Ker}(V^* \to W^*) = \dim V^* - \dim \text{Image}(V^* \to W^*)$ W^*) = dim V^* – dim W^* = dim V – dim W .

Time for you to talk!

Problem 1 Let $X \subseteq Y \subseteq V$. Show that $X^{\perp} \supseteq Y^{\perp}$ (these are both subspaces of V^*).

Problem 2 Let $W \subset V$ be vector spaces. Show that $(W^{\perp})^{\perp} \supseteq W$. This one is a bit broken: $(W^{\perp})^{\perp}$ is in $V^{\ast\ast},$ not in $V.$ So this only makes sense if we identify V and V^{**} , which only works in finite dimensions, or if we ask that the natural map $V \to V^{**}$ carries W into $(W^{\perp})^{\perp}$, which is true.

Problem 3 Let $W \subset V$ be finite dimensional vector spaces. Show that $(W^{\perp})^{\perp} = W$.

Problem 4 Let X and Y be subspaces of V . Show that $(X + Y)^{\perp} = X^{\perp} \cap Y^{\perp}$. If V is finite dimensional, show also that $(X \cap Y)^{\perp} = X^{\perp} + Y^{\perp}.$

Problem 5 Let V and W be vector spaces and let $A: V \to W$ be a linear transformation. Then $\text{Ker}(A^*) = \text{Im}(A)^{\perp}$. If V and W are finite dimensional, we also have $\text{Im}(A^*) = \text{Ker}(A)^{\perp}$.