
Multilinear forms and determinants



Last time: A multilinear form

A :

k︷ ︸︸ ︷
V × V × · · · × V → F

is a function which takes in k input vectors and gives a scalar such

that, in each position, we have

A(~v1, ~v2, . . . , ~vj−1, ~x+ ~y,~vj+1, . . . , ~vk) =

A(~v1, ~v2, . . . , ~vj−1, ~x,~vj+1, . . . , ~vk)+A(~v1, ~v2, . . . , ~vj−1, ~y,~vj+1, . . . , ~vk).

A(~v1, ~v2, . . . , ~vj−1, c~z,~vj+1, . . . , ~vk)=cA(~v1, ~v2, . . . , ~vj−1, ~z,~vj+1, . . . , ~vk).
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A multilinear form is alternating if A(~v1, ~v2, . . . , ~vk) = 0 whenever

two of the ~v’s are equal. This implies that switching any ~vi and ~vj
switches the sign of A.

So, if any two of i1, i2, . . . , ik are equal, then

A(ei1 , ei2 , . . . , eik) = 0.

And, if i1, i2, . . . , ik are distinct, then the k! values of A where we

order the inputs in different ways all differ up to sign. So A is

determined by the values A(ei1 , ei2 , . . . , eik) where

i1 < i2 < · · · < ik.

For example, if A(e1, e2, e3) = a, then we have

A(e1, e2, e3) = A(e2, e3, e1) = A(e3, e1, e2) = a and

A(e1, e3, e2) = A(e3, e2, e1) = A(e2, e1, e3) = −a.

But it isn’t clear that, for general k, there is a consistent way to

choose the signs.



Okay, clearing up the sign issue. Suppose we know that

A(e1, e2, e3, e4, e5) = 7. What should A(e3, e5, e1, e2, e4) be?



Okay, clearing up the sign issue. Suppose we know that

A(e1, e2, e3, e4, e5) = 7. What should A(e3, e5, e1, e2, e4) be?

A(e3, e5, e1, e2, e4) = −A(e3, e4, e1, e2, e5)

= A(e3, e2, e1, e4, e5)

= −A(e1, e2, e3, e4, e5) = −7

.

What if we did the switching in a different order? Would we get

the same sign? It turns out that, yes, we would!
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every permutation of {1, 2, 3, . . . , k} such that, switching the order
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The sign of (σ(1), σ(2), . . . , σ(k)) is

(−1)#{(i,j) : i<j and σ(i)>σ(j)}.

We need to show that, if we switch σ(i), σ(j), then this changes

sign.

Of course, we switch the contribution from (i, j). Also, if i < h < j

and σ(h) is between σ(i) and σ(j), the contribution to the exponent

from (i, h) and (h, j) will switch by 2, so the sign will not change.



The sign of (σ(1), σ(2), . . . , σ(k)) is

(−1)#{(i,j) : i<j and σ(i)>σ(j)}.

We need to show that, if we switch σ(i), σ(j), then this changes

sign.

Of course, we switch the contribution from (i, j). Also, if i < h < j

and σ(h) is between σ(i) and σ(j), the contribution to the exponent

from (i, h) and (h, j) will switch by 2, so the sign will not change.



Now we know that there is a well defined sign for each

permutation. So, given the values A(ei1 , ei2 , . . . , eik) for

1 ≤ i1 < i2 < · · · < ik ≤ n, we can describe A on all k-tuples of

basis vectors as follows:

If two of j1, j2, . . . , jk are equal, then A(ej1 , ej2 , . . . , ejk) = 0.

If all of the j1, j2, . . . , jk are distinct, and

jσ(1) < jσ(2) < · · · < jσ(k), then

A(ej1 , ej2 , . . . , ejk) = sign(σ)A(ejσ(1) , ejσ(2) , . . . , ejσ(k)).



Thus, if dimV = n, the space of alternating multilinear forms of k

vectors has dimension
(
n
k

)
.

Corollary: If k > n, the only alternating multilinear form V k → F

is 0.

Corollary: If k = n, there a one dimensional space of alternating

multilinear form V k → F .
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Let’s see how we compute det from this definition.

We’ll start with n = 2. Let T have matrix
[
T11 T12

T21 T22

]
.

ω(Te1, T e2) = ω(T11e1 + T21e2, T12e1 + T22e2) =

T11T12ω(e1, e1) +T11T22ω(e1, e2) +T21T12ω(e2, e1) +T21T22ω(e2, e2)

= 0+T11T22ω(e1, e2)−T21T12ω(e1, e2)+0 = (T11T22−T21T12)ω(e1, e2).

So

det
[
T11 T12

T21 T22

]
= (T11T22 − T21T12).



Similarly, for n = 3, expanding ω(Te1, T e2, T e3) gives 33 terms:

T11T12T13ω(e1, e1, e1) + T11T12T23ω(e1, e1, e2) + · · ·

All but 3! of them are 0. The nonzero ones give

T11T22T33ω(e1, e2, e3) + T11T32T23ω(e1, e3, e2) + · · · =

(T11T22T33−T11T32T23−T21T12T33+T21T32T13+T31T12T23−T31T22T13)

· ω(e1, e2, e3).



Similarly, for n = 3, expanding ω(Te1, T e2, T e3) gives 33 terms:

T11T12T13ω(e1, e1, e1) + T11T12T23ω(e1, e1, e2) + · · ·

All but 3! of them are 0. The nonzero ones give

T11T22T33ω(e1, e2, e3) + T11T32T23ω(e1, e3, e2) + · · · =

(T11T22T33−T11T32T23−T21T12T33+T21T32T13+T31T12T23−T31T22T13)

· ω(e1, e2, e3).

In general, we get∑
σ a permutation of {1,2,3,...,n}

sign(σ)Tσ(1)1Tσ(2)2 · · ·Tσ(n)n.



We started by saying that there is a one dimensional space of

alternating multilinear forms

n︷ ︸︸ ︷
V × V × · · · × V → F .

Concretely, all such forms are a scalar multiple of

(~v1, ~v2, . . . , ~vn) −→ det(~v1 ~v2 · · · ~vn).



Properties of determinant

Multilinearity gives the standard column properties of determinant:

• If we switch two columns, we switch the sign of the

determinant.

• If we rescale a column, the determinant rescales.

• If we add a multiple of one column to another, the determinant

is unchanged.

These properties also hold for rows, since det(A) = det(AT ).



We have det(T ) = 0 if and only if T is not invertible. In other

words, if ω is a nonzero alternating form, then ω(~v1, ~v2, . . . , ~vn) = 0

if and only if ~v1, ~v2, . . . , ~vn are linearly dependent.
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We have det(T ) = 0 if and only if T is not invertible. In other

words, if ω is a nonzero alternating form, then ω(~v1, ~v2, . . . , ~vn) = 0

if and only if ~v1, ~v2, . . . , ~vn are linearly dependent.

Proof: Suppose that we had a linear dependency

~vj = c1~v1 + c2~v2 + · · ·+ cj−1~vj−1. Then

ω(~v1, ~v2, . . . , ~vn) = ω(~v1, ~v2, . . . , ~vj−1, c1~v1+c2~v2+· · ·+cj−1~vj−1, · · ·~vn)

=

j−1∑
k=1

ckω(~v1, ~v2, . . . , ~vj−1, ~vk, . . . , ~vn) = 0 + 0 + · · ·+ 0.

In the other direction, suppose for the sake of contradiction that ~v1,

~v2, . . . , ~vn is a basis of V , and yet ω(~v1, ~v2, . . . , ~vn) = 0. Since ω is

determined by its value on a basis, we deduce that ω is identically

zero; contradiction.
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multiplicative:

det(AB) = det(A) det(B).

Let’s prove this!

ω(AB~v1, AB~v2, . . . , AB~vn) = det(A)ω(B~v1, B~v2, . . . , B~vn)

= det(A) det(B)ω(~v1, ~v2, . . . , ~vn)
.

But also

ω(AB~v1, AB~v2, . . . , AB~vn) = det(AB)ω(~v1, ~v2, . . . , ~vn).

So

det(AB) = det(A) det(B).



Enjoy your break! More about determinants when we return!


