BASIC COMPUTATIONS

Problem 1. Consider the matrix

$$A = \begin{bmatrix} 2 & 6 & 2 & 2 & 4 & 2 \\ 1 & 3 & 2 & 3 & 5 & -1 \\ -1 & -3 & -1 & -1 & -2 & 1 \\ 1 & 3 & 1 & 1 & 2 & -2 \end{bmatrix}$$

The row reduction (reduced row-echelon form) of A is

$$\begin{bmatrix} 1 & 3 & 0 & -1 & -1 & 0 \\ 0 & 0 & 1 & 2 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- (1) Compute a basis for the image of A.
- (2) Compute a basis for the kernel of A.

Problem 2. Find a basis for the vector space of real polynomials of degree ≤ 3 obeying f(1) = f(-1) = 0.

Problem 3. Let $\vec{x} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$, $\vec{y} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ and $\vec{z} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$. What are the coordinates of the vector $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$ in the basis $\vec{x}, \vec{y}, \vec{z}$?

BASIC PROOFS

Problem 4. Let V be a vector space. Prove, directly from the axioms of a vector space, that $-(-\vec{v}) = \vec{v}$ for all $\vec{v} \in V$.

Problem 5. Let V be a vector space over a field F. Let $a \in F$ and let $\vec{v} \in V$ and suppose that $a\vec{v} = \vec{0}$. Show that either a = 0 or $\vec{v} = \vec{0}$ (or both). In addition to the axioms of a vector space, you may use that $c\vec{0} = \vec{0}$ and $0\vec{x} = \vec{0}$.

Problem 6. Let V be a vector space and let $\vec{v_1}$, $\vec{v_2}$, $\vec{v_3}$ be linearly independent vectors in V. Let \vec{w} be an additional vector. Show that $(\vec{v_1}, \vec{v_2}, \vec{v_3}, \vec{w})$ is linearly dependent if and only if $\vec{w} \in \text{Span}(\vec{v_1}, \vec{v_2}, \vec{v_3})$.

Problem 7. Let F be a field and let F^{∞} be the vector space of infinite sequences $(a_1, a_2, a_3, \ldots,)$ of elements of F. Let $\vec{e_i}$ be the element $(0, 0, 0, \ldots, 1, 0, \ldots)$ of F^{∞} , whose single one is in the *i*-th position; let \vec{f} be the vector $(1, 1, 1, 1, \ldots)$.

- (1) Show that the infinite list of vectors $\vec{e}_1, \vec{e}_2, \vec{e}_3, \ldots, \vec{f}$ is linearly independent.
- (2) Give (and prove your answer correct) a vector \vec{g} which is not in the span of $\vec{e_1}$, $\vec{e_2}$, $\vec{e_3}$, ..., \vec{f} .

Problem 8. Let V be a finite dimensional vector space and let X and Y be subspaces with $X \cap Y = \{0\}$. Show that dim $V \ge \dim X + \dim Y$.

CHALLENGING PROOFS

Problem 9. Let V be a vector space over a field F and let X and Y be subspaces of V. Suppose that $\vec{w_1}, \vec{w_2}, \ldots, \vec{w_a}$ is a basis of $X \cap Y$, that $\vec{w_1}, \vec{w_2}, \ldots, \vec{w_a}, \vec{x_1}, \vec{x_2}, \ldots, \vec{x_b}$ is a basis of X and that $\vec{w_1}, \vec{w_2}, \ldots, \vec{w_a}, \vec{y_1}, \vec{y_2}, \ldots, \vec{y_c}$ is a basis of Y. Show that the list of vectors $\vec{w_1}, \vec{w_2}, \ldots, \vec{w_a}, \vec{x_1}, \vec{x_2}, \ldots, \vec{x_b}, \vec{y_1}, \vec{y_2}, \ldots, \vec{y_c}$ is linearly independent.

Problem 10. Let V be a vector space and let $T: V \to V$ be a linear transformation obeying $T^2 = T$. Let K = Ker(T) and let I = Image(T). Show that $V = K \oplus I$.

Problem 11. Let V be a finite dimensional vector space and let $T : V \to V$ be a linear transformation. Show that dim Ker $(T^2) \leq 2 \dim \text{Ker}(T)$.