
Spaces of linear maps, dual spaces, transpose



Overview of today: We are going to introduce a notion of the

“dual” to a vector space. The difference between the original

vectors and the dual vectors can be thought of like the difference

between column vectors and row vectors. Keeping track of the

difference between vectors and dual vectors may seem fiddly at

first, but I hope it will eventually be clarifying.
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Question: If dimV = m and dimW = n, what is dim Hom(V,W )?

It is mn. Concretely, think of V as Fm and W as Fn. Then

Hom(V,W ) is n×m matrices, and an n×m matrix is uniquely

determined by its mn entries.

Abstractly, let ~ei be a basis of V and let ~fj be a basis of W . Let

hji be the linear transformation

hji

(∑
ai~ei

)
= ai ~fj .

Every linear transformation is a unique linear combination of the

hji. If T (~ei) =
∑

cji ~fj then T =
∑

cjihji.

Again, this is mn basis vectors.
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We want to spend today focused on a special case: n = 1. We are

looking at Hom(V, F ). We call this “the dual space to V ” and write

V ∗. To repeat: An element of Hom(V, F ) is a linear transformation

V → F .

If e1, e2, . . . is a basis of V , then we define e∗i in V ∗ by

e∗i

(∑
cjej

)
= ci.

If V is finite dimensional, with basis e1, e2, . . . , en, then e∗i is a

basis of V . So dimV = dimV ∗ in the finite dimensional case.

Think of elements of V as column vectors and elements of V ∗ as

row vectors.

We will avoid infinite dimensional issues in this lecture.
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So the matrix of F is the transpose matrix, [ 1 3 5
2 4 6 ].
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If you have ever felt unsatisifed by transpose, here is where it

comes from.



Theorem: If F : V →W is surjective, then F ∗ : W ∗ → V ∗ is

injective.

Reminder: “Surjective” means “image is everything”; “injective”

means “kernel is zero”.

In finite dimensions, this says “if a matrix is surjective, then its

transpose is injective”.
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injective.

Proof: Suppose for F ∗(w∗) is the 0-function, so (F ∗(w∗)) (~v) for

all vectors ~v in V . In other words, w∗(F (~v)) = 0 for all ~v. So w∗ is

0 for inputs in Image(F ).

But our assumption is that Image(F ) is everything. So this shows

that w∗ is 0 for every input, and w∗ = 0, as desired. �
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Another way to put this is: If v∗ is any linear functional V → F ,

and V embeds as a subspace of W , can we extend v∗ to a linear

functional on W?

Theorem: If V and W are finite dimensional, and F : V →W is

injective, then W ∗ → V ∗ is surjective.

Proof: Let ~v1,~v2, . . . , ~vk be a basis of V , so that F (~v1), F (~v2), . . . ,

F (~vk) is a basis of F (V ). Then extend F (~v1), F (~v2), . . . , F (~vk) to

a basis F (~v1), F (~v2), . . . , F (~vk), ~w1, ~w2, . . . ,~wn−k of W . Put

U = Span(~w1, ~w2, . . . , ~wn−k). Then W = U ⊕ F (V ). So every

vector ~w ∈W can be written uniquely as ~u + F (~v). Then define

w∗(~w) to be v∗(~v).



What about the reverse direction? If F : V →W is injective, is

W ∗ → V ∗ surjective?

Another way to put this is: If v∗ is any linear functional V → F ,

and V embeds as a subspace of W , can we extend v∗ to a linear

functional on W?

Theorem: If V and W are finite dimensional, and F : V →W is

injective, then W ∗ → V ∗ is surjective.

The infinite dimensional case is not obvious! For example, consider

R∞finite ⊂ R∞. We have a linear functional (a1, a2, . . .) 7→
∑

ai on

R∞finite. If we can extend this to R∞, this means that we can define

a notion of sum for every sequence, no matter how divergent. More

later . . .


