Theorems about invertible matrices

Remember last time: A matrix is in *row reduced echelon form if:*

- Either row is either all 0's, or else its first nonzero entry is a 1. This 1 is called a *pivot*.
- In a column which contains a pivot, called a *pivot column*, all the other entries are 0.
- The nonzero rows are at the top of the matrix; they are ordered so that the pivots go from left to right as we go down the rows.

Remember last time: A matrix is in *row reduced echelon form if:*

- Either row is either all 0's, or else its first nonzero entry is a 1. This 1 is called a *pivot*.
- In a column which contains a pivot, called a *pivot column*, all the other entries are 0.
- The nonzero rows are at the top of the matrix; they are ordered so that the pivots go from left to right as we go down the rows.

Theorem: For any matrix A, there is an invertible matrix U such that UA is in row reduced echelon form.

- 1. Every column of rref(A) is a pivot column.
- 2. There is an $n \times m$ matrix B with $BA = \mathrm{Id}_n$.
- 3. Ker $(A) = {\vec{0}}.$
- 4. For all \vec{x} and \vec{y} in \mathbb{R}^n , if $A\vec{x} = A\vec{y}$ then $\vec{x} = \vec{y}$. (Vocabulary: A is *injective*.)

- 1. Every column of rref(A) is a pivot column.
- 2. There is an $n \times m$ matrix B with $BA = \mathrm{Id}_n$.
- 3. $\operatorname{Ker}(A) = \{\vec{0}\}.$
- 4. For all \vec{x} and \vec{y} in \mathbb{R}^n , if $A\vec{x} = A\vec{y}$ then $\vec{x} = \vec{y}$. (Vocabulary: A is *injective*.)
- Note: If these conditions hold, then $m \ge n$.

Proofs: (1) \implies (2): If every column is a pivot column, the row reduced form of A must be

$$R = \begin{bmatrix} 1 & & \\ & 1 & \\ & & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

٠

So there is some invertible U with UA = R.

Now, $QR = Id_n$ where

$$Q = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ & 1 & 0 & 0 & 0 \\ & & 1 & 0 & 0 & 0 \end{bmatrix}$$

So $(QU^{-1})(UR) = Id_n$. Take $B = QU^{-1}$.

(2) \implies (3): Suppose that $A\vec{x} = \vec{0}$. Then $BA\vec{x} = B\vec{0} = \vec{0}$ so we deduce that $\vec{x} = \vec{0}$.

(3)
$$\implies$$
 (4): Suppose that $A\vec{x} = A\vec{y}$. Then $A(\vec{x} - \vec{y}) = 0$, so $\vec{x} - \vec{y} = \vec{0}$ and we deduce that $\vec{x} = \vec{y}$.

 $NOT(1) \implies NOT(4)$: Let R be the row reduced form of A, and let the k-th column be a free column. Let the pivot columns be p_1, p_2, \dots, p_r .

$$R = \begin{bmatrix} 1 & 0 & R_{1k} & * & 0 \\ 0 & 1 & R_{2k} & * & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}.$$

Then $Re_k = R \sum_j R_{jk} e_{p_j}$. In the example,

$$\begin{bmatrix} 1 & 0 & R_{1k} * 0 \\ 0 & 1 & R_{2k} * 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & R_{1k} * 0 \\ 0 & 1 & R_{2k} * 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} R_{13} \\ R_{23} \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Then $URe_k = UR \sum_j R_{jk} e_{p_j}$, where A = UR. \Box

- 1. Every row of $\operatorname{rref}(A)$ is a pivot row.
- 2. There is an $n \times m$ matrix C with $AC = \mathrm{Id}_m$.
- 3. Image(A) = \mathbb{R}^m . (Vocabulary: A is surjective).

- 1. Every row of $\operatorname{rref}(A)$ is a pivot row.
- 2. There is an $n \times m$ matrix C with $AC = \mathrm{Id}_m$.
- 3. Image(A) = \mathbb{R}^m . (Vocabulary: A is surjective).

Note, if these conditions happen, then $m \leq n$.

Proofs: (1) \implies (2): Let R be the row reduced form, and let A = UR. So R looks like

$$R = \begin{bmatrix} 1 & * & 0 & * \\ 0 & 0 & 1 & * \end{bmatrix}.$$

Then RQ = Id, where

$$Q = \begin{bmatrix} 1 & 0\\ 0 & 0\\ 0 & 1\\ 0 & 0 \end{bmatrix}$$

And then $(UR)(QU^{-1}) = \text{Id as well.}$

(2) \implies (3): Suppose that $AC = \mathrm{Id}_m$. Let \vec{y} be in \mathbb{R}^m . Then we claim that $\vec{x} = C\vec{y}$ is a solution to $A\vec{x} = \vec{y}$. Indeed, $AC\vec{y} = \mathrm{Id}\vec{y} = \vec{y}$. NOT(1) \implies NOT(3). Let R be the row reduced form, and let A = UR. Suppose that the bottom row of R is not a pivot row. Then $\begin{bmatrix} 0\\0\\1 \end{bmatrix}$ is not in the image of R. So $U\begin{bmatrix} 0\\0\\1 \end{bmatrix}$ is not in the image of A.

- 1. Every column of rref(A) is a pivot column.
- 2. There is an $n \times m$ matrix B with $BA = \mathrm{Id}_n$.
- 3. $\operatorname{Ker}(A) = \{\vec{0}\}.$
- 4. A is injective.

If these conditions hold, then $m \ge n$.

Theorem: Let A be an $m \times n$ matrix. The following are equivalent:

- 1. Every row of $\operatorname{rref}(A)$ is a pivot row.
- 2. There is an $n \times m$ matrix C with $AC = \mathrm{Id}_m$.
- 3. A is surjective,

If these conditions hold, then $m \leq n$.

Corollary: If A has an inverse, then m = n.

Corollary: If A is injective and surjective, then m = n.

Theorem Let m = n and let A be an $m \times n$ matrix. Then the following are equivalent:

- 1. Every column of rref(A) is a pivot column.
- 2. There is an $n \times m$ matrix B with $BA = \mathrm{Id}_n$.
- 3. $\operatorname{Ker}(A) = \{\vec{0}\}.$
- 4. A is injective.
- 5. Every row of $\operatorname{rref}(A)$ is a pivot row.
- 6. There is an $n \times m$ matrix C with $AC = \mathrm{Id}_m$.
- 7. A is surjective,

Theorem Let m = n and let A be an $m \times n$ matrix. Then the following are equivalent:

- 1. Every column of $\operatorname{rref}(A)$ is a pivot column.
- 2. There is an $n \times m$ matrix B with $BA = \mathrm{Id}_n$.
- 3. Ker $(A) = {\vec{0}}.$
- 4. A is injective.
- 5. Every row of $\operatorname{rref}(A)$ is a pivot row.
- 6. There is an $n \times m$ matrix C with $AC = \mathrm{Id}_m$.
- 7. A is surjective,

Proof: We already did the equivalence of (1) - (4), and of (5) - (7). For square matrices, (1) and (5) are obviously equivalent.