Theorems about invertible matrices




Remember last time: A matrix is in row reduced echelon form
if:
e Either row is either all 0’s, or else its first nonzero entry is a 1.
This 1 is called a pivot.

e In a column which contains a pivot, called a pivot column, all
the other entries are 0.

e The nonzero rows are at the top of the matrix; they are ordered

so that the pivots go from left to right as we go down the rows.
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if:
e Either row is either all 0’s, or else its first nonzero entry is a 1.

This 1 is called a pivot.

e In a column which contains a pivot, called a pivot column, all
the other entries are 0.

e The nonzero rows are at the top of the matrix; they are ordered
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Theorem: For any matrix A, there is an invertible matrix U such

that U A is in row reduced echelon form.




Theorem: Let A be an m x n matrix. The following are

equivalent:

. Every column of rref(A) is a pivot column.

. There is an n X m matrix B with BA = 1d,,.
. Ker(A) = {0}.

. For all ¥ and ¢ in R™, if A¥ = Ay then ¥ = ¢. (Vocabulary: A

is tnjective.)
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Note: If these conditions hold, then m > n.




Proofs: (1) = (2): If every column is a pivot column, the row
reduced form of A must be
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So there is some invertible U wit

Now, QR = 1Id,, where
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So (QU~Y)(UR) = 1d,,. Take B = QU 1.




(2) = (3): Suppose that AZ = 0. Then BAZ = B0 = 0 so we
deduce that & = 0.

(3) = (4): Suppose that AZ = Ay. Then A(Z —¢) =0, so
#Z— 7 =0 and we deduce that ¥ = 7.




NOT(1) = NOT(4): Let R be the row reduced form of A, and let
the k-th column be a free column. Let the pivot columns be pq, ps,
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Then Rej = sz Rjrep,. In the example,
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Then URe, =UR) _; Rjrep,, where A=UR. [




Theorem: Let A be an m x n matrix. The following are

equivalent:

1. Every row of rref(A) is a pivot row.

2. There is an n x m matrix C' with AC = 1d,,,.

3. Image(A) = R™. (Vocabulary: A is surjective).
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Proofs: (1) = (2): Let R be the row reduced form, and let
A =UR. So R looks like

R=1551
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And then (UR)(QU ') =1d as well.

Then R = Id, where




(2) = (3): Suppose that AC =1d,,,. Let ¥/ be in R™. Then we
claim that £ = C'y is a solution to A¥ = 3. Indeed, ACy = Idy = v.

NOT(1) = NOT(3). Let R be the row reduced form, and let

A = UR. Suppose that the bottom row of R is not a pivot row.

Then [ﬂ is not in the image of R. So U {ﬂ is not in the image of

A.
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equivalent:
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4. A is injective.
If these conditions hold, then m > n.
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Corollary: If A has an inverse, then m = n.

Corollary: If A is injective and surjective, then m = n.
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Theorem Let m = n and let A be an m x n matrix. Then the

following are equivalent:

1. Every column of rref(A) is a pivot column.

2. There is an n x m matrix B with BA = 1d,,.
. Ker(A4) = {0}.

. A is injective.

. Every row of rref(A) is a pivot row.

. There is an n x m matrix C with AC = 1d,,,.
. A is surjective,

Proof: We already did the equivalence of (1) — (4), and of

(5) — (7). For square matrices, (1) and (5) are obviously equivalent.




