
Fields, vector spaces, subspaces, linear operators



We have been dealing with three kinds of objects: scalars, vectors

and matrices.

We are going to consider more abstract versions of each of these.

• The notion of “a field” will replace R. The elements of the field

will be our new version of scalars.

• The notion of “a vector space” will replace Rn. Elements of the

vector space will be our new version of vectors.

• The notion of a linear operator with replace a matrix.



Fields

A field is a set F with two operations + and · and two special

elements called 0 and 1, obeying:

0 + x = x + 0=x x · 1 = 1 · x=x Identity

x + y =y + x x · y =y · x Commutativity

x + (y + z) =(x + y) + z x · (y · z) =(x · y) · z Associativity

x · (y + z) =x · y + x · z (x + y) · z =x · z + y · z Distributivity

For all x ∈ F , there is an element −x such that

x + (−x) = (−x) + x = 0. Additive Inverse

If x is a nonzero element of F , there is an element x−1 such that

x · x−1 = x−1 · x = 1 Multiplicative Inverse.

and 0 6= 1 Nontriviality.



Examples of fields: Q (rational numbers), R (real numbers), C
(complex numbers).

More exotically, for any prime p, the field Fp is integers modulo p.

+ 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

× 0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1

.



In general, all the algebraic identities that you are used to in the

real numbers still work in any field. There are ways to make this

precise, but let’s do some examples instead.

Can you prove:

(x + y) · (x + y) =
(
x · x + (1 + 1) · (x · y)

)
+ y · y ?



In general, all the algebraic identities that you are used to in the

real numbers still work in any field. There are ways to make this

precise, but let’s do some examples instead.

Can you prove:

(x + y) · (x + y) =
(
x · x + (1 + 1) · (x · y)

)
+ y · y ?

(x + y) · (x + y)

= x · (x + y) + y · (x + y) Distributive

= (x · x + x · y) + (y · x + y · y) Distributive (twice)

=
(
x · x + (x · y + y · x)

)
+ y · y Associative (twice)

=
(
x · x + (x · y + x · y)

)
+ y · y Commutative

=
(
x · x + (1 · (x · y) + 1 · (x · y))

)
+ y · y Mult. Identity (twice)

=
(
x · x + (1 + 1) · (x · y)

)
+ y · y Distributive



This one is harder:

x · 0 = 0.



This one is harder:

x · 0 = 0.

Here is one way:

0 + 1 = 1 Add. Identity

x · (0 + 1) = x · 1
x · 0 + x · 1 = x · 1 Distributive

x · 0 + x = x Mult Identity

(x · 0 + x) + (−x) = x + (−x)

x · 0 + (x + (−x)) = x + (−x) Associative

x · 0 + 0 = 0 Add. Inverse (twice)

x · 0 = 0 Add. Identity



One more very useful one:

x · (−1) = −x.



One more very useful one:

x · (−1) = −x.

We have

x · (−1) + x = x · (−1) + x · 1 = x((−1) + 1) = x · 0 = 0.

So

(x · (−1) + x) + (−x) = 0 + (−x).

The left hand side is

(x · (−1)+x)+(−x) = x · (−1)+(x+(−x)) = x · (−1)+0 = x · (−1).

The right hand side is −x.



Vector spaces

Let F be a field. An F -vector space is a set V with:

• An operation called + which takes two elements of V and

makes a new element of V . (Vector addition)

• An operation called · which takes an elements of V and an

element of F and makes a new element of V . (Scalar

multiplication)

• A special element called ~0.



Let F be a field. An F -vector space is a set V with +, ·, ~0. They

obey the field axioms plus:

~v +~0 = ~0 + ~v=~v 1 · ~v =~v Identity

~v + ~w =~w + ~v Commutativity

~u + (~v + ~w) =(~u + ~v) + ~w a · (b · ~v) =(a · b) · ~v Associativity

a · (~v + ~w) =a · ~v + a · ~w (a + b) · ~v=a · ~v + b · ~v Distributivity

For all ~v ∈ V , there is an element −~v such that

~v + (−~v) = (−~v) + ~v = ~0. Additive Inverse



Let F be a field. An F -vector space is a set V with +, ·, ~0. They

obey the field axioms plus:

~v +~0 = ~0 + ~v=~v 1 · ~v =~v Identity

~v + ~w =~w + ~v Commutativity

~u + (~v + ~w) =(~u + ~v) + ~w a · (b · ~v) =(a · b) · ~v Associativity

a · (~v + ~w) =a · ~v + a · ~w (a + b) · ~v=a · ~v + b · ~v Distributivity

For all ~v ∈ V , there is an element −~v such that

~v + (−~v) = (−~v) + ~v = ~0. Additive Inverse

As before, we can deduce:

0 · ~v = ~0 a ·~0 = ~0 (−1)~v = −~v.



The obvious example of a vector space is Fn: The list of n-tuples

(x1, x2, . . . , xn) of elements of F , with the standard vector addition

and scalar multiplication.



The obvious example of a vector space is Fn: The list of n-tuples

(x1, x2, . . . , xn) of elements of F , with the standard vector addition

and scalar multiplication.

More generally, if X is any set, then FX is the set of all functions

X → F . We make this into a vector space by

(f + g)(x) = f(x) + g(x) (af)(x) = af(x).

So Fn is F {1,2,...,n}.



Let V be a vector space over a field F . A subspace of V is a

subset L of V such that:

• If ~v and ~w are in L then ~v + ~w is in L.

• If ~v is in L and a is in G then a~v is in L.

A subspace of a vector space will always be a vector space. First

courses in linear algebra usually focus on subspaces of Fn.



Let V be a vector space over a field F . A subspace of V is a

subset L of V such that:

• If ~v and ~w are in L then ~v + ~w is in L.

• If ~v is in L and a is in G then a~v is in L.

A subspace of a vector space will always be a vector space. First

courses in linear algebra usually focus on subspaces of Fn.

We can also look at subspaces of FX for infinite X. For example,

consider the vector space RR of all real valued functions on the real

line. Then {continuous functions}, or {smooth functions}, or

{bounded functions}, all form subspaces of RR.



Linear Transformations

Let V and W be two F -vector spaces. A linear transformation

is a map T : V →W obeying

T (~v + ~w) = T (~v) + T (~w) T (a~v) = aT (~v).

It is easy to check that

T (~0) = ~0 T (−~v) = −T (~v).



Linear Transformations

Let V and W be two F -vector spaces. A linear transformation

is a map T : V →W obeying

T (~v + ~w) = T (~v) + T (~w) T (a~v) = aT (~v).

The obvious example is V = Fn, W = Fm and T is an m× n

matrix. We will soon see that all linear transformations Fn → Fm

come from matrices.



Linear Transformations

Let V and W be two F -vector spaces. A linear transformation

is a map T : V →W obeying

T (~v + ~w) = T (~v) + T (~w) T (a~v) = aT (~v).

We can also think of linear transformations of infinite dimensional

vector spaces. For example f 7→ f(0) and f 7→ f(1) + f(2) + f(3)

are both linear transformations RR → R.

The map f 7→ df
dx is a map from the subspaces

{differentiable functions} to the subspace {continuous functions}.

The map f 7→
∫ 1

0
f(x)dx is a map from the subspace

{continuous functions} to R.


