
Linear independence, spanning sets, bases, dimension



Before we start: Poll questions

• I’m a little confused on Theorem 6 in 1.4. The theorem itself

makes sense, I’m just a bit confused on the wording within the

proof. Going over it in lecture might help me to understand.



Before we start: Poll questions

• If every injective and surjective matrix is invertible, is every

invertible matrix injective and surjective?



Suppose that we have a vector space V over a field F . We’d like to

treat V like Fn. What do we need in order to do so?



Suppose that we have a vector space V over a field F . We’d like to

treat V like Fn. What do we need in order to do so?

We need to find some vectors in V which we can treat like the

vectors

[ 1
0
...
0

]
,

[ 0
1
...
0

]
, . . . ,

[ 0
0
...
1

]
. These vectors, call them ~u1, ~u2, . . . ,

~un, should have two properties:

Spanning Every vector ~v in V should be expressible as

a1~u1 + a2~u2 + · · ·+ an~un for some scalars a1, a2, . . . , an in F .

Linearly Independent No vector in V should be expressible as

a1~u1 + a2~u2 + · · ·+ an~un in two different ways.



Example

Let L be the plane x + y + z = 0 in R3.

• If we take ~u1 =
[

1
−1
0

]
, then many vectors in L are not multiples

of ~u1. Linearly independent, but not spanning.

• If we take ~u1 =
[

1
−1
0

]
, ~u2 =

[
0
1
−1

]
, ~u3 =

[
1
0
−1

]
, then ~u3 = ~u1 + ~u2,

so vectors can be expressed in more than one way. Spanning, but

not linearly independent.

• If ~u1 =
[

1
−1
0

]
, ~u2 =

[
0
1
−1

]
, then every vector in L can be written

in exactly one way as a linear combination of ~u1 and ~u2. Namely,[
x
y
z

]
= x

[
1
−1
0

]
+ (x + y)

[
0
1
−1

]
. Both spanning and linearly

independent
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+ (x + y)
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0
1
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independent

A linearly independent set is “not too big”. A spanning set is “not

too small”. A list of vectors which is both linearly independent and

spanning is called a basis.



More on linear independence

Linear independence can be defined in a less intuitive but more

useful way:

Theorem: Let ~u1, ~u2, . . . , ~un be a list of vectors in a vector space

V . Then the following conditions are equivalent:

1. For every vector ~v in V , there is at most one way to write ~v as

a1~u1 + a2~u2 + · · ·+ an~un for some scalars a1, a2, . . . , an in F .

2. The only solution to c1~u1 + c2~u2 + · · ·+ cn~un = ~0 is

c1 = c2 = · · · = cn = 0.



More on linear independence

Linear independence can be defined in a less intuitive but more

useful way:

Theorem: Let ~u1, ~u2, . . . , ~un be a list of vectors in a vector space

V . Then the following conditions are equivalent:

1. For every vector ~v in V , there is at most one way to write ~v as

a1~u1 + a2~u2 + · · ·+ an~un for some scalars a1, a2, . . . , an in F .

2. The only solution to c1~u1 + c2~u2 + · · ·+ cn~un = ~0 is

c1 = c2 = · · · = cn = 0.

Remember our example of a set which was not linearly independent:

~u1 =
[

1
−1
0

]
, ~u2 =

[
0
1
−1

]
, ~u3 =

[
1
0
−1

]
. We have ~u1 + ~u2 − ~u3 = ~0.



More on linear independence

Theorem: Let ~u1, ~u2, . . . , ~un be a list of vectors in a vector space

V . Then the following conditions are equivalent:

1. For every vector ~v in V , there is at most one way to write ~v as

a1~u1 + a2~u2 + · · ·+ an~un for some scalars a1, a2, . . . , an in F .

2. The only solution to c1~u1 + c2~u2 + · · ·+ cn~un = ~0 is

c1 = c2 = · · · = cn = 0.

Proof: NOT(2) =⇒ NOT(1): If c1~u1 + c2~u2 + · · ·+ cn~un = ~0 then

c1~u1 + c2~u2 + · · ·+ cn~un = 0~u1 + 0~u2 + · · ·+ 0~un, so we have two

ways to write ~0 as a linear combination of the ~ui.

NOT(1) =⇒ NOT(2): Suppose that

a1~u1 + · · ·+ an~un = b1~u1 + · · ·+ bn~un for

(a1, a2, . . . , an) 6= (b1, b2, . . . , bn). Then

(a1 − b1)~u1 + (a2 − b2)~u2 + · · ·+ (an − bn)~un = ~0.



More on spanning

If V is any vector space and X is a subset of V , the span of X is

the set of all linear combinations
∑

ai~vi for scalars a1, a2, . . . , an

and for ~v1, ~v2, . . . , ~vn in X.

We write Span(X) for the span of X. Span(X) is a subspace of X.
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Lemma: If Y spans V , and Y is in Span(X), then X spans V .



More on spanning

If V is any vector space and X is a subset of V , the span of X is

the set of all linear combinations
∑

ai~vi for scalars a1, a2, . . . , an

and for ~v1, ~v2, . . . , ~vn in X.

Lemma: If Y spans V , and Y is in Span(X), then X spans V .

Proof: Let ~v be in V . Write ~v =
∑

i ai~yi for ~yi in Y . Write

~yi =
∑

j bij~xj . Then

~v =
∑
i

ai
(∑

j

bij~xj

)
=
∑
j

(∑
i

aibij
)
~xj .

So ~v is a linear combination of vectors ~xj in X.



Since we want to work with infinite dimensional vector spaces, we

also have definitions for infinite sets. Let V be a vector space and

let X be a subset of V .

Definition: We say that X is linearly independent if there is

not a finite subset {~u1, ~u2, . . . , ~un} of X for which there are

coefficients c1, c2, . . . , cn, not all zero, with

c1~u1 + c2~u2 + · · ·+ cn~un.

Definition: We say that X is spans V if, for every ~v in V , there

is a finite subset {~u1, ~u2, . . . , ~un} of X and coefficients a1, a2, . . . ,

an with ~v = a1~u1 + a2~u2 + · · ·+ an~un.



Since we want to work with infinite dimensional vector spaces, we

also have definitions for infinite sets. Let V be a vector space and

let X be a subset of V .

Definition: We say that X is linearly independent if there is

not a finite subset {~u1, ~u2, . . . , ~un} of X for which there are

coefficients c1, c2, . . . , cn, not all zero, with

c1~u1 + c2~u2 + · · ·+ cn~un.

Definition: We say that X is spans V if, for every ~v in V , there

is a finite subset {~u1, ~u2, . . . , ~un} of X and coefficients a1, a2, . . . ,

an with ~v = a1~u1 + a2~u2 + · · ·+ an~un.

Note that we never talk about infinite sums of vectors. If our

vector space is F∞, we would not say

(1, 1, 1, . . .) = (1, 0, 0, . . .) + (0, 1, 0, . . .) + (0, 0, 1, . . .) + · · ·

because we wouldn’t write down the right hand side at all.



Since we want to work with infinite dimensional vector spaces, we

also have definitions for infinite sets. Let V be a vector space and

let X be a subset of V .

Definition: We say that X is linearly independent if there is

not a finite subset {~u1, ~u2, . . . , ~un} of X for which there are

coefficients c1, c2, . . . , cn, not all zero, with

c1~u1 + c2~u2 + · · ·+ cn~un.

Definition: We say that X is spans V if, for every ~v in V , there

is a finite subset {~u1, ~u2, . . . , ~un} of X and coefficients a1, a2, . . . ,

an with ~v = a1~u1 + a2~u2 + · · ·+ an~un.

Definition: We say that X is a basis of V if it is both linearly

independent and spans V .



To repeat again:

A linearly independent set can express each vector in at most

one way. It is not too big.

A spanning set can express each vector in at least one way. It is

not too small.

A basis can express each vector in at most one way. It is just

right.



Key Lemma: Let V be a vector space. Let ~u1, ~u2, . . . , ~up be a

spanning set, and let ~v1, ~v2, . . . , ~vq be linearly independent. Then

p ≥ q.

In other words: Any spanning set is larger than any linearly

independent set
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p ≥ q.

Proof: Since the ~u’s span, we can write each ~vj as

~vj =

p∑
i=1

Aij~ui.



Key Lemma: Let V be a vector space. Let ~u1, ~u2, . . . , ~up be a

spanning set, and let ~v1, ~v2, . . . , ~vq be linearly independent. Then

p ≥ q.

Proof: Since the ~u’s span, we can write each ~vj as

~vj =

p∑
i=1

Aij~ui.

Now, suppose for the sake of contradiction that p < q. Consider the

p equations in q variables:

A11c1 + A12c2 + · · · + A1qcq = 0

A21c1 + A22c2 + · · · + A2qcq = 0
...

Ap1c1 + Ap2c2 + · · · + Apqcq = 0

Since p < q, they have a nonzero solution.



Proof: Since the ~u’s span, we can write each ~vj as

~vj =

p∑
i=1

Aij~ui.

Now, suppose for the sake of contradiction that p < q. Consider the

p equations in q variables:

A11c1 + A12c2 + · · · + A1qcq = 0

A21c1 + A22c2 + · · · + A2qcq = 0
...

Ap1c1 + Ap2c2 + · · · + Apqcq = 0

Since p < q, they have a nonzero solution. Then,∑
j

cj~vj =
∑
j

cj
(∑

i

Aij~ui

)
=
∑
i

(∑
j

Aijcj
)
~ui =

∑
i

0~ui = ~0.

This contradicts that the ~v’s are supposed to be linearly

independent.



Key Lemma: Let V be a vector space. Let ~u1, ~u2, . . . , ~up be a

spanning set, and let ~v1, ~v2, . . . , ~vq be linearly independent. Then

p ≥ q.

In other words: Any spanning set is larger than any linearly

independent set.

Corollary: If ~u1, ~u2, . . . , ~up and ~v1, ~v2, . . . , ~vq are both bases,

then p = q.



Key Lemma: Let V be a vector space. Let ~u1, ~u2, . . . , ~up be a

spanning set, and let ~v1, ~v2, . . . , ~vq be linearly independent. Then

p ≥ q.

In other words: Any spanning set is larger than any linearly

independent set.

Corollary: If ~u1, ~u2, . . . , ~up and ~v1, ~v2, . . . , ~vq are both bases,

then p = q.

Proof: Since ~u1, ~u2, . . . , ~up is a basis, it is a spanning set; since

~v1, ~v2, . . . , ~vq is a basis, it is linearly independent. So p ≥ q.

But, switching the roles of ~u and ~v, we also have p ≤ q.



Corollary: If ~u1, ~u2, . . . , ~up and ~v1, ~v2, . . . , ~vq are both bases,

then p = q.

We define the dimension of a vector space to be the number of

elements in any basis. We say that a vector space is finite

dimensional if it has a finite basis.



Which vector spaces have bases?

To see that there is an issue, notice that R is a Q vector space. It is

hard to imagine that there is some set of real number B such that

every real number is expressible in exactly one way as a rational

linear combination of numbers from B.

To give another example, let R∞ be the vector space of all

sequences (a1, a2, a3, . . .) of real numbers. The vectors (1, 0, 0, . . .),

(0, 1, 0, . . .), (0, 0, 1, . . .) are linearly independent, but they don’t

span. It is not at all clear whether we could expand this list to give

a basis.



Which vector spaces have bases?

To see that there is an issue, notice that R is a Q vector space. It is

hard to imagine that there is some set of real number B such that

every real number is expressible in exactly one way as a rational

linear combination of numbers from B.

To give another example, let R∞ be the vector space of all

sequences (a1, a2, a3, . . .) of real numbers. The vectors (1, 0, 0, . . .),

(0, 1, 0, . . .), (0, 0, 1, . . .) are linearly independent, but they don’t

span. It is not at all clear whether we could expand this list to give

a basis.

Whether or not you think all vector spaces have bases comes down

to a question about the foundations of mathematics; if you believe

in a claim called the ”Axiom of Choice”, then they do, otherwise, it

isn’t clear.



Which vector spaces have bases?

Without addressing this issue, here are two theorems which say

that, in finite dimensions, there is no issue:

Theorem Let V be a finite dimensional vector space and let W be

a subspace of V . Then W has a finite basis.

Theorem Let V be a vector space which has a finite spanning set.

Then V has a finite basis.
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Proof Note that every linearly independent subset of W has size

≤ dimV . So we can find a linearly independent subset B in W of

greatest possible size.
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independent, so the challenge is to show that it spans.
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Theorem Let V be a finite dimensional vector space and let W be

a subspace of V . Then W has a finite basis.

Proof Note that every linearly independent subset of W has size

≤ dimV . So we can find a linearly independent subset B in W of

greatest possible size.

We claim that B is a basis of W . We built B to be linearly

independent, so the challenge is to show that it spans.

Let ~w be in W . If ~w is in B, then clearly ~w is in Span(B).

If ~w is not in B, then B ∪ {~w} must be linearly dependent. Say

a~w +
∑

ci~bi = ~0

for ~bi in B. Moreover, a must be nonzero, as B is linearly

independent. Then

~w = − 1
a

∑
ci~bi

so ~w is in Span(B), as required.



Theorem Let V be a vector space which has a finite spanning set.

Then V has a finite basis.
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Proof: Let S be the finite spanning set. Let B be the largest

linearly independent subset of S; since S is finite, this makes sense.

As before, we claim that B is a basis. As before, we just need to

check that it spans.

First, we show that S is in Span(B). Let ~s be in S. As before, if ~s

is in B, then obviously ~s ∈ Span(B). And, if ~s is not in B, then

B ∪ {~s} is linearly dependent and we use this to show that ~s is in

Span(B).



Theorem Let V be a vector space which has a finite spanning set.

Then V has a finite basis.

Proof: Let S be the finite spanning set. Let B be the largest

linearly independent subset of S; since S is finite, this makes sense.

As before, we claim that B is a basis. As before, we just need to

check that it spans.

First, we show that S is in Span(B). Let ~s be in S. As before, if ~s

is in B, then obviously ~s ∈ Span(B). And, if ~s is not in B, then

B ∪ {~s} is linearly dependent and we use this to show that ~s is in

Span(B).

So S is in Span(B), and Span(S) = V . But then B spans V , from

our lemma from before.



Remark: These last two theorems were one of the first times we

really needed to divide.

Suppose that we tried to do linear algebra with our scalars being

the integers Z. Let V = Z2, and consider ~v1 = [ 11 ], ~v2 = [ 20 ] and

~v3 = [ 03 ]. Then one can check that ~v1, ~v2 and ~v3 span Z2. (Hint:

[ 10 ] = 3~v1 − ~v2 − ~v3, [ 01 ] = −2~v1 + ~v2 + ~v3.) They are not linearly

independent, since 6~v1 = 3~v2 + 2~v3.

However, no two of the ~vi span Z2! If [ xy ] is in Span(~v1, ~v2) then

x− y is divisible by 2; if [ xy ] is in Span(~v1, ~v3) then x− y is divisible

by 3 and, if [ xy ] is in Span(~v2, ~v3), then x is even and y is divisible

by 3. So none of these pairs spans all of Z2.

This is a first example to show that linear algebra over a field is

much nicer than linear algebra over what is called a ring. If you

like studying hard, interesting, things, take commutative algebra! If

you like studying easy, useful things, study linear algebra!


