
Bases of image and kernel



From the poll:
“I’m personally a big fan of when you handwrite things on the

board, I feel like I can follow the pace a lot more naturally.”

“Hoping for more computational examples in lecture to help

me to better understand how to apply what I have been learn-

ing.”



Also from the poll

“I am actually confused about the definition of field.”



Bases of image and kernel



Two basis ways we will describe subspaces:

• As spans of some list of vectors. In other words, as an image.

• By defining equations. In other words, by a kernel.



As spans of some list of vectors. In other words, as an image.

A finite dimensional example: Those vectors in R3 which are a

linear combination of
[

1
−1
0

]
,
[

1
0
−1

]
and

[
0
1
−1

]
.
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An infinite dimensional example: The set of polynomials in

R[x] which are of the form (x2 − 1)f(x) + (x3 − 1)g(x).

Note that this is the image of the R-linear map from R[x]2 → R[x]

sending (f(x), g(x)) to (x2 − 1)f(x) + (x3 − 1)g(x).



By defining equations. In other words, by a kernel.

A finite dimensional example: Those vectors
[
x
y
z

]
in R3 with

x + y + z = 0.

Note that this is

Ker
[
1 1 1

]
.



By defining equations. In other words, by a kernel.

A finite dimensional example: Those vectors
[
x
y
z

]
in R3 with

x + y + z = 0.

Note that this is

Ker
[
1 1 1

]
.

An infinite dimensional example: Those polynomials f(x)

with f(1) = 0. Note that this is the kernel of the R-linear map

R[x]→ R sending f(x) to f(1).



• As spans of some list of vectors. In other words, as an image.

• By defining equations. In other words, by a kernel.

How do we find a basis for each one? How do we switch from one

to the other? (This is textbook 2.6, if you want to see another

presentation.)



Suppose that we have a subspace L of Fm, described as

Span(~v1, ~v2, . . . , ~vn). How do we find a basis?

~v1 =
[
1
5
1

]
, ~v2 =

[
2
10
2

]
, ~v3 =

[
4
3
4

]
, ~v4 =

[
11
21
11

]
, ~v5 =

[
8
23
8

]
Suggestions? Observations?



One method: Column reduction
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Claim: The nonzero columns of the column reduction are a basis.
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nonzero columns of the row reduction span.
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One method: Column reduction
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 


1 0 0 0 0
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
Claim: The nonzero columns of the column reduction are a basis.

Spanning: We know that column operations don’t change the

image, and the zero columns don’t contribute to the image, so the

nonzero columns of the row reduction span.

Linear independence: Each column has a pivot 1 in a row where

all the other entries are zero.

Note that the dimension of Image(A) is the number of pivot 1’s in

the column reduction of A.



This method is very good for giving defining equations for

Image(A). For each free row, we get a formula expressing it in

terms of the pivot rows.

Image


1 2 4 11 8

5 10 3 21 23

1 2 4 11 8

 = Image


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 =

Can you see how to express x3 in terms of x1 and x2 in our

example? Can you write this space as a kernel?



This method is very good for giving defining equations for

Image(A). For each free row, we get a formula expressing it in

terms of the pivot rows.

Image


1 2 4 11 8

5 10 3 21 23

1 2 4 11 8

 = Image


1 0 0 0 0

0 1 0 0 0

1 0 0 0 0

 =

{[
x
y
z

]
: x = z

}
= Ker

[
1 0 −1

]
.



So we now how to find a basis for a subspace given as an image,

and how to write that space as a kernel.



Another way: row reduction

A =


1 2 4 11 8

5 10 3 21 23

1 2 4 11 8

  R =


1 2 0 3 4

0 0 1 2 1

0 0 0 0 0

 .

~v1 =
[
1
5
1

]
, ~v2 =

[
2
10
2

]
, ~v3 =

[
4
3
4

]
, ~v4 =

[
11
21
11

]
, ~v5 =

[
8
23
8

]
.

Problem Write ~v2, ~v4 and ~v5 as a linear combination of the

vectors ~v1 and ~v3.



A =


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5 10 3 21 23
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  R =


1 2 0 3 4

0 0 1 2 1

0 0 0 0 0


We saw before that A and R have the same kernel. Another way to

say this is that the linear relations between the ~ai are the same as

the linear relations between the ~ri.

So a subset ~ai1 , ~ai2 , . . . , ~aik of the ~ai is linearly independent if and

only if the corresponding subset of the ~ri1 , ~ri2 , . . . , ~rik of the ~ri is

linearly independent.

And ~aj is in Span(~ai1 ,~ai2 , . . . ,~aik) if and only if ~rj is in

Span(~ri1 , ~ri2 , . . . , ~rik).

So ~ai1 , ~ai2 , . . . , ~aik is a basis of Span(~a1,~a2, . . . ,~an) if and only if

~ri1 , ~ri2 , . . . , ~rik is a basis of Span(~r1, ~r2, . . . , ~rn)!



A =


1 2 4 11 8

5 10 3 21 23

1 2 4 11 8

  R =


1 2 0 3 4

0 0 1 2 1

0 0 0 0 0


~ai1 , ~ai2 , . . . , ~aik is a basis of Span(~a1,~a2, . . . ,~an) if and only if ~ri1 ,

~ri2 , . . . , ~rik is a basis of Span(~r1, ~r2, . . . , ~rn).

But it is obvious that the pivot columns are a basis for

Span(~r1, ~r2, . . . , ~rn)! So the ~a’s which are in the pivot positions are

a basis of Span(~a1,~a2, . . . ,~an).



One nice thing about this method is that the basis that we get is a

subset of ~a1, ~a2, . . . , ~an.

Note that the number of elements in our basis is the number of

pivot columns of the row reduction.

So the number of pivots of the row reduction is the same as the

number of pivots of the column reduction. In other words, the row

space and the column space have the same dimension.



What if we are given a space by some linear equations? For

example, what if we want a basis for the set of vectors (w, x, y, z)

with

w + x + 2y + 3z = 0

w + x + 3y + 5z = 0
?



What if we are given a space by some linear equations? For

example, what if we want a basis for the set of vectors (w, x, y, z)

with

w + x + 2y + 3z = 0

w + x + 3y + 5z = 0
?

This is the same as asking for the kernel of a matrix: In this case,

Ker [ 1 1 2 3
1 1 3 5 ].



As we saw before, a matrix and its row reduction have the same

kernel. So it is enough to understand the kernel of a row reduced

matrix.
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to compute the pivot variables in terms of the free variables:

x1 = −x2 + x4 x3 = −2x4.
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As we saw before, a matrix and its row reduction have the same

kernel. So it is enough to understand the kernel of a row reduced

matrix.

1 1 2 3

1 1 3 5

 
 1 1 0 −1

0 0 1 2

 .

As we discussed before, we can compute use the row reduced form

to compute the pivot variables in terms of the free variables:

x1 = −x2 + x4 x3 = −2x4.[
x1
x2
x3
x4

]
= x2

[−1
1
0
0

]
+ x4

[
1
0
−2
1

]
.

This gives a basis of the kernel, since each element of the kernel can

be written like this in a unique way. In particular, we have

expressed this kernel as an image.


