First topic: Coordinates

Let H be the plane $x + y + z = 0$ in \mathbb{R}^3 .

• Give a basis \vec{u}, \vec{v} of H. To test that your answer makes sense, write the vectors $\begin{pmatrix} 3 \\ 2 \end{pmatrix}$ −5 \setminus , $\frac{-5}{3}$ 3 2) and $\begin{pmatrix} 2 \\ -5 \end{pmatrix}$ 3 \setminus as linear combinations of your basis elements.

• Let T be the linear map $(x, y, z) \longrightarrow (y, z, x)$ from \mathbb{R}^3 to \mathbb{R}^3 . For a general vector $p\vec{u} + q\vec{v}$, written in your basis, compute formulas for r and s such that

$$
r\vec{u} + s\vec{v} = T(p\vec{u} + q\vec{v}).
$$

When we introduced bases, we said that a basis allows us to treat a finite dimensional vector space V like $Fⁿ$. How does this work? Let $\mathcal{B} = (\vec{b}_1, \vec{b}_2, \dots, \vec{b}_n)$ be an basis of V, given in a fixed order.

When we introduced bases, we said that a basis allows us to treat a finite dimensional vector space V like $Fⁿ$. How does this work? Let $\mathcal{B} = (\vec{b}_1, \vec{b}_2, \dots, \vec{b}_n)$ be an basis of V, given in a fixed order. So there is a unique list of coefficients $\,$. . . \overline{c}_n \mathbb{I} for which $\vec{v} = c_1 \vec{b}_1 + c_2 \vec{b}_2 + \cdots + c_n \vec{b}_n$. We call $\begin{bmatrix} c_1 \\ \vdots \end{bmatrix}$. . . \overline{c}_n $\overline{}$ the "coefficients of \vec{v} in

the basis \mathcal{B} ". We denote it as $[\vec{v}]_{\mathcal{B}}$.

When we introduced bases, we said that a basis allows us to treat a finite dimensional vector space V like $Fⁿ$. How does this work? Let $\mathcal{B} = (\vec{b}_1, \vec{b}_2, \dots, \vec{b}_n)$ be an basis of V, given in a fixed order. Γ c_1 $\overline{}$

So there is a unique list of coefficients
$$
\begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}
$$
 for which
\n $\vec{v} = c_1 \vec{b}_1 + c_2 \vec{b}_2 + \dots + c_n \vec{b}_n$. We call $\begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$ the "coefficients of \vec{v} in
\nthe basis \mathcal{B} ". We denote it as $[\vec{v}]_{\mathcal{B}}$.

For example, let V be the plane $x + y + z = 0$ in \mathbb{R}^3 and let $\mathcal{B}=% \begin{bmatrix} \omega_{0}-i\frac{\gamma_{\rm{QE}}}{2} & g_{\rm{d}} \end{bmatrix}% ,$ $\left(\begin{array}{c} 1 \\ -1 \end{array}\right)$ 0 $\overline{}$, $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ 1 −1 $\big]$. Then $\big[$ $\frac{3}{2}$ 2 -5 $\Big]$ is $\Big[\begin{smallmatrix} 3 \\ 5 \end{smallmatrix} \Big]$ in the basis \mathcal{B} .

When we introduced bases, we said that a basis allows us to treat a finite dimensional vector space V like $Fⁿ$. How does this work? Let $\mathcal{B} = (\vec{b}_1, \vec{b}_2, \dots, \vec{b}_n)$ be an basis of V, given in a fixed order.

So there is a unique list of coefficients
$$
\begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}
$$
 for which
\n $\vec{v} = c_1 \vec{b}_1 + c_2 \vec{b}_2 + \dots + c_n \vec{b}_n$. We call $\begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$ the "coefficients of \vec{v} in
\nthe basis \mathcal{B} ". We denote it as $[\vec{v}]_{\mathcal{B}}$.

Remark: Every textbook seems to have a different notation for this concept. This is our book's choice. If it were up to me, I'd go with $\mathcal{B}[\vec{v}].$

By the definition of a basis, we get a bijection $V \longrightarrow F^n$. We send \vec{v} to $[\vec{v}]_{\mathcal{B}}$ and, in reverse, we send $\left[\begin{array}{c} c_1 \\ \vdots \end{array} \right]$. . . \overline{c}_n $\overline{}$ to $\vec{v} = c_1 \vec{b}_1 + c_2 \vec{b}_2 + \cdots + c_n \vec{b}_n.$

This bijection is a linear transformation between V and $Fⁿ$. Vocabulary: An invertible linear transformation is called an isomorphism.

This bijection is a linear transformation between V and $Fⁿ$. Let's check that this map is linear:

Proof: First, suppose that $\vec{v} = c_1 \vec{b}_1 + \cdots + c_n \vec{b}_n$ and $\vec{w} = d_1 \vec{b}_1 + \cdots + d_n \vec{b}_n$. So $[\vec{v}]$ _B = $\bigcap c_1$. . . \overline{c}_n $\overline{}$ and $[\vec{w}]_{\mathcal{B}} =$ $\int d_1$. . .
.
. d_n $\overline{}$. Then we have

$$
\vec{v} + \vec{w} = (c_1\vec{b}_1 + \dots + c_n\vec{b}_n) + (d_1\vec{b}_1 + \dots + d_n\vec{b}_n) =
$$

$$
(c_1 + d_1)\vec{b}_1 + \dots + (c_n + d_n)\vec{b}_n
$$

so

$$
[\vec{v} + \vec{w}]_{\mathcal{B}} = \begin{bmatrix} c_1 + d_1 \\ \vdots \\ c_n + d_n \end{bmatrix}.
$$

We also check scalar multiplication. So the map $V \to F^n$ is linear.

We could directly check that the inverse map is linear. But it is better to show:

Theorem: Let $T: U \to V$ be a bijective map of vector spaces. If T is a linear transformation, then so is T^{-1} .

Proof: Let \vec{v}_1 and \vec{v}_2 be in V, and let $\vec{u}_1 = T^{-1}(\vec{v}_1)$ and $\vec{u}_2 = T^{-1}(\vec{v}_2)$. We need to show that $T^{-1}(\vec{v}_1 + \vec{v}_2) = \vec{u}_1 + \vec{u}_2$.

Since T is a bijection, this is the same as showing that $\vec{v}_1 + \vec{v}_2 = T(\vec{u}_1 + \vec{u}_2)$. But this just follows by linearity of T:

$$
T(\vec{u}_1 + \vec{u}_2) = T(\vec{u}_1) + T(\vec{u}_2) = \vec{v}_1 + \vec{v}_2.
$$

The argument for scalar multiplication is similar. \Box

We could directly check that the inverse map is linear. But it is better to show:

Theorem: Let $T: U \to V$ be a bijective map of vector spaces. If T is a linear transformation, then so is T^{-1} .

Proof: Let \vec{v}_1 and \vec{v}_2 be in V, and let $\vec{u}_1 = T^{-1}(\vec{v}_1)$ and $\vec{u}_2 = T^{-1}(\vec{v}_2)$. We need to show that $T^{-1}(\vec{v}_1 + \vec{v}_2) = \vec{u}_1 + \vec{u}_2$.

Since T is a bijection, this is the same as showing that $\vec{v}_1 + \vec{v}_2 = T(\vec{u}_1 + \vec{u}_2)$. But this just follows by linearity of T:

$$
T(\vec{u}_1 + \vec{u}_2) = T(\vec{u}_1) + T(\vec{u}_2) = \vec{v}_1 + \vec{v}_2.
$$

The argument for scalar multiplication is similar. \square

In summary: A basis gives us an isomorphism between V and F^n , and coordinates are the explicit way we write this isomorphism.

Let's see how linear transformations work in coordinates (Textbook 3.4). Let $T: W \to V$ be a linear transformation. Let $W = (\vec{w}_1, \vec{w}_2, \dots, \vec{w}_n)$ be a basis of W and let $V = (\vec{v}_1, \vec{v}_2, \dots, \vec{v}_m)$ be a basis of V .

Let's see how linear transformations work in coordinates (Textbook 3.4). Let $T: W \to V$ be a linear transformation. Let $W = (\vec{w}_1, \vec{w}_2, \dots, \vec{w}_n)$ be a basis of W and let $V = (\vec{v}_1, \vec{v}_2, \dots, \vec{v}_m)$ be a basis of V .

Then

$$
T(\vec{w}_j) = \sum B_{ij} \vec{v}_i
$$

for some unique scalars B_{ij} . We call the matrix B "the linear" transformation T in the coordinates of V and W" and call it $\mathcal{V}[T]\mathcal{W}$.

$$
T(\vec{w}_j) = \sum B_{ij} \vec{v}_i
$$

for some unique scalars B_{ij} . We call the matrix B "the linear" transformation T in the coordinates of V and W" and call it $\mathcal{V}[T]\mathcal{W}$. The matrix B determines the transformation. For any vector $\sum c_j \vec{w}_j$ in W, we have

$$
T\left(\sum_{j} c_j \vec{w}_j\right) = \sum_{j} c_j T(\vec{w}_j) = \sum_{j} c_j \sum_{i} B_{ij} \vec{v}_i = \sum_{i} \left(\sum_{j} B_{ij} c_j\right) \vec{v}_i
$$

$$
T(\vec{w}_j) = \sum B_{ij} \vec{v}_i
$$

for some unique scalars B_{ij} . We call the matrix B "the linear" transformation T in the coordinates of V and W" and call it $\mathcal{V}[T]\mathcal{W}$. The matrix B determines the transformation. For any vector $\sum c_j \vec{w}_j$ in W, we have

$$
T\left(\sum_{j} c_j \vec{w}_j\right) = \sum_{j} c_j T(\vec{w}_j) = \sum_{j} c_j \sum_{i} B_{ij} \vec{v}_i = \sum_{i} \left(\sum_{j} B_{ij} c_j\right) \vec{v}_i
$$

We can summarize this formula as

$$
[T\vec{x}]_{\mathcal{V}} = (\mathcal{V}[T]_{\mathcal{W}}).
$$

$$
T(\vec{w}_j) = \sum B_{ij} \vec{v}_i
$$

for some unique scalars B_{ij} . We call the matrix B "the linear" transformation T in the coordinates of V and W" and call it $\mathcal{V}[T]\mathcal{W}$. The matrix B determines the transformation. For any vector $\sum c_j \vec{w}_j$ in W, we have

$$
T\left(\sum_{j} c_j \vec{w}_j\right) = \sum_{j} c_j T(\vec{w}_j) = \sum_{j} c_j \sum_{i} B_{ij} \vec{v}_i = \sum_{i} \left(\sum_{j} B_{ij} c_j\right) \vec{v}_i
$$

We can summarize this formula as

$$
[T\vec{x}]_{\mathcal{V}} = (\mathcal{V}[T]_{\mathcal{W}}).
$$

We similarly have

$$
u(ST]_W = (u[S]_V) (v[T]_W).
$$

Let's go back to our example from the start of class:

Let H be the plane $x + y + z = 0$ in \mathbb{R}^3 . Let $\vec{v}_1 =$ $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ −1 0 $\overline{}$ and let $\vec{v}_2 =$ $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ 1 −1 $\overline{}$.

Let T be the transformation $(x, y, z) \longrightarrow (y, z, x)$. So

$$
T\vec{v}_1 \hspace{2mm} = \hspace{2mm} \left[\begin{smallmatrix} 0 \\ 1 \\ -1 \end{smallmatrix}\right] \hspace{2mm} = \hspace{2mm} \vec{v}_2
$$

$$
T\vec{v}_2 = \begin{bmatrix} -1\\0\\1 \end{bmatrix} = -\vec{v}_1 - \vec{v}_2
$$

So the transformation T, in the basis (\vec{v}_1, \vec{v}_2) , is

$$
\begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix}.
$$

Consider the following problem: Compute

$$
\begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix}^{100} \begin{bmatrix} 1 \\ 6 \end{bmatrix}.
$$

(Why? Wait until we get to eigenvectors for real.)

Consider the following problem: Compute

$$
\begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix}^{100} \begin{bmatrix} 1 \\ 6 \end{bmatrix}.
$$

Attacked directly, this is a mess. But let's work in the basis $\vec{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\vec{v}_2 = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$ $\binom{-1}{2}$. What is the matrix of $\left[\begin{smallmatrix} 1 & 1 \\ 4 & 1 \end{smallmatrix}\right]$ in this basis?

Consider the following problem: Compute

$$
\begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix}^{100} \begin{bmatrix} 1 \\ 6 \end{bmatrix}.
$$

Attacked directly, this is a mess. But let's work in the basis $\vec{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\vec{v}_2 = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$ $\binom{-1}{2}$. What is the matrix of $\left[\begin{smallmatrix} 1 & 1 \\ 4 & 1 \end{smallmatrix}\right]$ in this basis? We have $\begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix} \vec{v}_1 = \begin{bmatrix} 3 \\ 6 \end{bmatrix} = 3\vec{v}_1$ and $\begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix} \vec{v}_2 = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$ $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$ = $-\vec{v}_2$. So, in this basis, the matrix is $\begin{bmatrix} 3 & 0 \\ 0 & -1 \end{bmatrix}$ $\left[\begin{smallmatrix} 3 & 0 \ 0 & -1 \end{smallmatrix}\right].$

And what are the coordinates of $\begin{bmatrix} 1 \\ 6 \end{bmatrix}$ in this basis?

Consider the following problem: Compute

$$
\begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix}^{100} \begin{bmatrix} 1 \\ 6 \end{bmatrix}.
$$

Attacked directly, this is a mess. But let's work in the basis $\vec{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\vec{v}_2 = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$ $\binom{-1}{2}$. What is the matrix of $\left[\begin{smallmatrix} 1 & 1 \\ 4 & 1 \end{smallmatrix}\right]$ in this basis? We have $\begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix} \vec{v}_1 = \begin{bmatrix} 3 \\ 6 \end{bmatrix} = 3\vec{v}_1$ and $\begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix} \vec{v}_2 = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$ $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$ = $-\vec{v}_2$. So, in this basis, the matrix is $\begin{bmatrix} 3 & 0 \\ 0 & -1 \end{bmatrix}$ $\left[\begin{smallmatrix} 3 & 0 \ 0 & -1 \end{smallmatrix}\right].$

And what are the coordinates of $\begin{bmatrix} 1 \\ 6 \end{bmatrix}$ in this basis? $\begin{bmatrix} 1 \\ 6 \end{bmatrix} = 2\vec{v}_1 + \vec{v}_2$, so $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

We have $\begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix} \vec{v}_1 = \begin{bmatrix} 3 \\ 6 \end{bmatrix} = 3\vec{v}_1$ and $\begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix} \vec{v}_2 = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$ $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$ = $-\vec{v}_2$. So, in this basis, the matrix is $\begin{bmatrix} 3 & 0 \\ 0 & -1 \end{bmatrix}$ $\left[\begin{smallmatrix} 3 & 0 \ 0 & -1 \end{smallmatrix}\right].$

And what are the coordinates of $\begin{bmatrix} 1 \\ 6 \end{bmatrix}$ in this basis? $\begin{bmatrix} 1 \\ 6 \end{bmatrix} = 2\vec{v}_1 + \vec{v}_2$, so $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

So, in these coordinates, we are trying to compute

$$
\begin{bmatrix} 3 & 0 \\ 0 & -1 \end{bmatrix}^{100} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3^{100} \\ 2 \end{bmatrix}.
$$

So the answer to the original question is that

$$
\begin{bmatrix} 1 & 1 \ 4 & 1 \end{bmatrix}^{100} \begin{bmatrix} 1 \ 6 \end{bmatrix} = 3^{100} \vec{v}_1 + \vec{v}_2 = 3^{100} \begin{bmatrix} 1 \ 2 \end{bmatrix} + \begin{bmatrix} -1 \ 2 \end{bmatrix}.
$$

Second topic: Direct sums and quotient spaces

We start with a homework problem: Let V be a vector space and let X and Y be subspaces. Show that the following are equivalent:

- 1. Every vector in V can be written in exactly one way as $\vec{x} + \vec{y}$ for $\vec{x} \in X$ and $\vec{y} \in Y$.
- 2. Every vector in V can be written as $\vec{x} + \vec{y}$ for $\vec{x} \in X$ and $\vec{y} \in Y$, and $X \cap Y = \{0\}.$

We start with a homework problem: Let V be a vector space and let X and Y be subspaces. Show that the following are equivalent:

- 1. Every vector in V can be written in exactly one way as $\vec{x} + \vec{y}$ for $\vec{x} \in X$ and $\vec{y} \in Y$.
- 2. Every vector in V can be written as $\vec{x} + \vec{y}$ for $\vec{x} \in X$ and $\vec{y} \in Y$, and $X \cap Y = \{0\}.$

Proof: In either case, we are assuming that every vector can be written as $\vec{x} + \vec{y}$.

(1) \implies (2): If \vec{u} is in $X \cap Y$, then $\vec{x} + \vec{y} = (\vec{x} + \vec{u}) + (\vec{y} - \vec{u})$. This would give multiple formulas for the same vector unless $\vec{u} = \vec{0}$.

(2) \implies (1): Suppose, to the contrary, that $\vec{x}_1 + \vec{y}_1 = \vec{x}_2 + \vec{y}_2$. Then $\vec{x}_1 - \vec{x}_2 = \vec{y}_1 - \vec{y}_2$, so assumption (2) tells us that $\vec{x}_1 - \vec{x}_2 = \vec{y}_1 - \vec{y}_2 = 0$, and we have $\vec{x}_1 = \vec{x}_2$ and $\vec{y}_1 = \vec{y}_2$.

In this case, we'll say that $V = X \oplus Y$. For example, $\mathbb{R}^3 = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \right\}$ \hat{y} z $\bigg\}$: $x+y+z=0$ } $\bigoplus \big\{ \bigg[\begin{array}{c} t \\ t \end{array} \bigg]$ t t i }. In this case, we'll say that $V = X \oplus Y$.

For example,
$$
\mathbb{R}^3 = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : x + y + z = 0 \right\} \oplus \left\{ \begin{bmatrix} t \\ t \\ t \end{bmatrix} \right\}.
$$

In finite dimensional vector spaces over \mathbb{R} , we always have $\mathbb{R}^n = L \oplus L^{\perp}$, but this isn't our focus right now.

In this case, we'll say that $V = X \oplus Y$.

For example,
$$
\mathbb{R}^3 = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : x + y + z = 0 \right\} \oplus \left\{ \begin{bmatrix} t \\ t \\ t \end{bmatrix} \right\}.
$$

In finite dimensional vector spaces over \mathbb{R} , we always have $\mathbb{R}^n = L \oplus L^{\perp}$, but this isn't our focus right now.

If $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_m$ is a basis of X, and $\vec{y}_1, \vec{y}_2, \ldots, \vec{y}_n$ is a basis of Y, then $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_m, \vec{y}_1, \vec{y}_2, \ldots, \vec{y}_n$ is a basis of V. In particular, $\dim V = \dim X + \dim Y$.

In this case, we'll say that $V = X \oplus Y$. For example, $\mathbb{R}^3 = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \right\}$ \hat{y} \tilde{z} $\bigg\}$: $x+y+z=0$ $\bigoplus \big\{\bigg[\begin{array}{c}t\\t\end{array}\bigg]$ t t i }. In finite dimensional vector spaces over \mathbb{R} , we always have $\mathbb{R}^n = L \oplus L^{\perp}$, but this isn't our focus right now. If $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_m$ is a basis of X, and $\vec{y}_1, \vec{y}_2, \ldots, \vec{y}_n$ is a basis of Y, then $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_m, \vec{y}_1, \vec{y}_2, \ldots, \vec{y}_n$ is a basis of V. In particular, $\dim V = \dim X + \dim Y$.

So, when we write vectors in the coordinates of this basis, the X-entries come first and then the Y -entries. Similarly, if $V_1 = X_1 \oplus Y_1$ and $V_2 = X_2 \oplus Y_2$, then linear transformations $V_1 \rightarrow V_2$ are given by block matrices.

$$
\left[\begin{array}{c|c} X_1 \to X_2 & Y_1 \to X_2 \\ \hline X_1 \to Y_2 & Y_1 \to Y_2 \end{array}\right].
$$

There is another, related but distinct, construction, called direct sum. Today, I'll write \boxplus for that other construction, but people normally call them both \oplus , and I'll start doing that soon.

There is another, related but distinct, construction, called direct sum. Today, I'll write \boxplus for that other construction, but people normally call them both \oplus , and I'll start doing that soon.

Let X and Y be two vector spaces over the same field F . We define the vector space $X \boxplus Y$ as follows:

- The elements of $X \boxplus Y$ are ordered pairs (\vec{x}, \vec{y}) with $\vec{x} \in X$ and $\vec{y} \in Y$.
- Addition is defined as $(\vec{x}_1, \vec{y}_1) + (\vec{x}_2, \vec{y}_2) = (\vec{x}_1 + \vec{x}_2, \vec{y}_1 + \vec{y}_2).$
- Scalar multiplication is defined as $c(\vec{x}_1, \vec{y}_1) = (c\vec{x}_1, c\vec{y}_1).$

There is another, related but distinct, construction, called direct sum. Today, I'll write \boxplus for that other construction, but people normally call them both \oplus , and I'll start doing that soon.

Let X and Y be two vector spaces over the same field F . We define the vector space $X \boxplus Y$ as follows:

- The elements of $X \boxplus Y$ are ordered pairs (\vec{x}, \vec{y}) with $\vec{x} \in X$ and $\vec{y} \in Y$.
- Addition is defined as $(\vec{x}_1, \vec{y}_1) + (\vec{x}_2, \vec{y}_2) = (\vec{x}_1 + \vec{x}_2, \vec{y}_1 + \vec{y}_2).$
- Scalar multiplication is defined as $c(\vec{x}_1, \vec{y}_1) = (c\vec{x}_1, c\vec{y}_1).$

So, if X and Y are both subspaces of V and $V = X \oplus Y$, then $X \boxplus Y$ is isomorphic to $X \oplus Y$, by $(\vec{x}, \vec{y}) \mapsto \vec{x} + \vec{y}$. But we are allowed to talk about $X \boxplus Y$ without starting with a subspace that X and Y are both contained in.

Is there some natural way to talk about "the part of V which isn't $X"$?

Is there some natural way to talk about "the part of V which isn't $X"$?

One answer, for finite dimensional real vector spaces, is X^{\perp} , but that isn't ours.

Is there some natural way to talk about "the part of V which isn't $X"$?

Define $\vec{v}_1 \equiv \vec{v}_2 \mod X$ if $\vec{v}_1 - \vec{v}_2 \in X$. Check that

- If $\vec{v}_1 \equiv \vec{v}_2$ and $\vec{w}_1 \equiv \vec{w}_2$ then $\vec{v}_1 + \vec{w}_1 \equiv \vec{v}_2 + \vec{w}_2$.
- If $\vec{v}_1 \equiv \vec{v}_2$ and c is a scalar then $c\vec{v}_1 \equiv c\vec{v}_2$.

Is there some natural way to talk about "the part of V which isn't $X"$?

Define $\vec{v}_1 \equiv \vec{v}_2 \mod X$ if $\vec{v}_1 - \vec{v}_2 \in X$. Check that

- If $\vec{v}_1 \equiv \vec{v}_2$ and $\vec{w}_1 \equiv \vec{w}_2$ then $\vec{v}_1 + \vec{w}_1 \equiv \vec{v}_2 + \vec{w}_2$.
- If $\vec{v}_1 \equiv \vec{v}_2$ and c is a scalar then $c\vec{v}_1 \equiv c\vec{v}_2$.

The elements of V/X are the equivalence classes for V/X , with addition and scalar multiplication defined as above.

Is there some natural way to talk about "the part of V which isn't $X"$?

Define $\vec{v}_1 \equiv \vec{v}_2 \mod X$ if $\vec{v}_1 - \vec{v}_2 \in X$. Check that

- If $\vec{v}_1 \equiv \vec{v}_2$ and $\vec{w}_1 \equiv \vec{w}_2$ then $\vec{v}_1 + \vec{w}_1 \equiv \vec{v}_2 + \vec{w}_2$.
- If $\vec{v}_1 \equiv \vec{v}_2$ and c is a scalar then $c\vec{v}_1 \equiv c\vec{v}_2$.

The elements of V/X are the equivalence classes for V/X , with addition and scalar multiplication defined as above.

If
$$
V = X \oplus Y
$$
, then $Y \longrightarrow V \longrightarrow V/X$ is an isomorphism.