
First topic: Coordinates



Let H be the plane x + y + z = 0 in R3.

• Give a basis ~u, ~v of H. To test that your answer makes sense,

write the vectors
(

3
2
−5

)
,
(−5

3
2

)
and

(
2
−5
3

)
as linear combinations of

your basis elements.

• Let T be the linear map (x, y, z) −→ (y, z, x) from R3 to R3. For

a general vector p~u + q~v, written in your basis, compute formulas

for r and s such that

r~u + s~v = T (p~u + q~v) .



When we introduced bases, we said that a basis allows us to treat a

finite dimensional vector space V like Fn. How does this work?

Let B = (~b1,~b2, . . . ,~bn) be an basis of V , given in a fixed order.
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for which

~v = c1~b1 + c2~b2 + · · ·+ cn~bn. We call

[
c1
...
cn

]
the “coefficients of ~v in

the basis B”. We denote it as [~v]B.
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finite dimensional vector space V like Fn. How does this work?

Let B = (~b1,~b2, . . . ,~bn) be an basis of V , given in a fixed order.

So there is a unique list of coefficients

[
c1
...
cn
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for which

~v = c1~b1 + c2~b2 + · · ·+ cn~bn. We call

[
c1
...
cn

]
the “coefficients of ~v in

the basis B”. We denote it as [~v]B.

For example, let V be the plane x + y + z = 0 in R3 and let

B =
([

1
−1
0

]
,
[

0
1
−1

])
. Then

[
3
2
−5

]
is [ 35 ] in the basis B.



When we introduced bases, we said that a basis allows us to treat a

finite dimensional vector space V like Fn. How does this work?

Let B = (~b1,~b2, . . . ,~bn) be an basis of V , given in a fixed order.

So there is a unique list of coefficients

[
c1
...
cn

]
for which

~v = c1~b1 + c2~b2 + · · ·+ cn~bn. We call

[
c1
...
cn

]
the “coefficients of ~v in

the basis B”. We denote it as [~v]B.

Remark: Every textbook seems to have a different notation for

this concept. This is our book’s choice. If it were up to me, I’d go

with B[~v].



By the definition of a basis, we get a bijection V −→ Fn. We send

~v to [~v]B and, in reverse, we send

[
c1
...
cn

]
to

~v = c1~b1 + c2~b2 + · · ·+ cn~bn.

This bijection is a linear transformation between V and Fn.

Vocabulary: An invertible linear transformation is called an

isomorphism .



This bijection is a linear transformation between V and Fn. Let’s

check that this map is linear:

Proof: First, suppose that ~v = c1~b1 + · · ·+ cn~bn and

~w = d1~b1 + · · ·+ dn~bn. So [~v]B =

[
c1
...
cn

]
and [~w]B =

[
d1

...
dn

]
. Then we

have

~v + ~w =
(
c1~b1 + · · ·+ cn~bn

)
+
(
d1~b1 + · · ·+ dn~bn

)
=

(c1 + d1)~b1 + · · ·+ (cn + dn)~bn

so

[~v + ~w]B =

[
c1+d1

...
cn+dn

]
.

We also check scalar multiplication. So the map V → Fn is linear.



We could directly check that the inverse map is linear. But it is

better to show:

Theorem: Let T : U → V be a bijective map of vector spaces. If

T is a linear transformation, then so is T−1.

Proof: Let ~v1 and ~v2 be in V , and let ~u1 = T−1(~v1) and

~u2 = T−1(~v2). We need to show that T−1(~v1 + ~v2) = ~u1 + ~u2.

Since T is a bijection, this is the same as showing that

~v1 + ~v2 = T (~u1 + ~u2). But this just follows by linearity of T :

T (~u1 + ~u2) = T (~u1) + T (~u2) = ~v1 + ~v2.

The argument for scalar multiplication is similar.



We could directly check that the inverse map is linear. But it is

better to show:

Theorem: Let T : U → V be a bijective map of vector spaces. If

T is a linear transformation, then so is T−1.

Proof: Let ~v1 and ~v2 be in V , and let ~u1 = T−1(~v1) and

~u2 = T−1(~v2). We need to show that T−1(~v1 + ~v2) = ~u1 + ~u2.

Since T is a bijection, this is the same as showing that

~v1 + ~v2 = T (~u1 + ~u2). But this just follows by linearity of T :

T (~u1 + ~u2) = T (~u1) + T (~u2) = ~v1 + ~v2.

The argument for scalar multiplication is similar.

In summary: A basis gives us an isomorphism between V and Fn,

and coordinates are the explicit way we write this isomorphism.



Let’s see how linear transformations work in coordinates (Textbook

3.4). Let T : W → V be a linear transformation. Let

W = (~w1, ~w2, . . . , ~wn) be a basis of W and let V = (~v1, ~v2, . . . , ~vm)

be a basis of V .
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∑
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T (~wj) =
∑

Bij~vi

for some unique scalars Bij . We call the matrix B “the linear

transformation T in the coordinates of V and W” and call it V [T ]W .

The matrix B determines the transformation. For any vector∑
cj ~wj in W , we have

T

∑
j

cj ~wj

 =
∑
j

cjT (~wj) =
∑
j

cj
∑
i

Bij~vi =
∑
i

∑
j

Bijcj

~vi

We can summarize this formula as

[T~x]V = (V [T ]W) .

We similarly have

U [ST ]W = (U [S]V) (V [T ]W) .



Let’s go back to our example from the start of class:

Let H be the plane x + y + z = 0 in R3. Let ~v1 =
[

1
−1
0

]
and let

~v2 =
[

0
1
−1

]
.

Let T be the transformation (x, y, z) −→ (y, z, x). So

T~v1 =
[

0
1
−1

]
= ~v2

T~v2 =
[−1

0
1

]
=−~v1−~v2

So the transformation T , in the basis (~v1, ~v2), is0 −1

1 −1

 .



The idea will be to choose coordinates which make computations

nice. The following example is really about eigenvectors and

eigenvalues, but we can see it now:



The idea will be to choose coordinates which make computations

nice. The following example is really about eigenvectors and

eigenvalues, but we can see it now:

Consider the following problem: Compute1 1

4 1

100 1

6

 .

(Why? Wait until we get to eigenvectors for real.)
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Attacked directly, this is a mess. But let’s work in the basis

~v1 = [ 12 ] and ~v2 =
[−1
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. What is the matrix of [ 1 1

4 1 ] in this basis?
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2

]
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4 1 ] in this basis?

We have [ 1 1
4 1 ]~v1 = [ 36 ] = 3~v1 and [ 1 1
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[
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= −~v2. So, in this

basis, the matrix is
[
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And what are the coordinates of [ 16 ] in this basis?



The idea will be to choose coordinates which make computations

nice. The following example is really about eigenvectors and

eigenvalues, but we can see it now:

Consider the following problem: Compute1 1

4 1

100 1

6

 .

Attacked directly, this is a mess. But let’s work in the basis

~v1 = [ 12 ] and ~v2 =
[−1

2

]
. What is the matrix of [ 1 1

4 1 ] in this basis?

We have [ 1 1
4 1 ]~v1 = [ 36 ] = 3~v1 and [ 1 1

4 1 ]~v2 =
[

1
−2
]

= −~v2. So, in this

basis, the matrix is
[
3 0
0 −1

]
.

And what are the coordinates of [ 16 ] in this basis? [ 16 ] = 2~v1 + ~v2,

so [ 12 ].



We have [ 1 1
4 1 ]~v1 = [ 36 ] = 3~v1 and [ 1 1

4 1 ]~v2 =
[

1
−2
]

= −~v2. So, in this

basis, the matrix is
[
3 0
0 −1

]
.

And what are the coordinates of [ 16 ] in this basis? [ 16 ] = 2~v1 + ~v2,

so [ 12 ].

So, in these coordinates, we are trying to compute3 0

0 −1

100 1

2

 =

3100

2

 .

So the answer to the original question is that1 1

4 1

100 1

6

 = 3100~v1 + ~v2 = 3100

1

2

+

−1

2

 .



Second topic: Direct sums and quotient spaces



We start with a homework problem: Let V be a vector space and

let X and Y be subspaces. Show that the following are equivalent:

1. Every vector in V can be written in exactly one way as ~x + ~y

for ~x ∈ X and ~y ∈ Y .

2. Every vector in V can be written as ~x+ ~y for ~x ∈ X and ~y ∈ Y ,

and X ∩ Y = {0}.



We start with a homework problem: Let V be a vector space and

let X and Y be subspaces. Show that the following are equivalent:

1. Every vector in V can be written in exactly one way as ~x + ~y

for ~x ∈ X and ~y ∈ Y .

2. Every vector in V can be written as ~x+ ~y for ~x ∈ X and ~y ∈ Y ,

and X ∩ Y = {0}.

Proof: In either case, we are assuming that every vector can be

written as ~x + ~y.

(1) =⇒ (2): If ~u is in X ∩ Y , then ~x + ~y = (~x + ~u) + (~y − ~u). This

would give multiple formulas for the same vector unless ~u = ~0.

(2) =⇒ (1): Suppose, to the contrary, that ~x1 + ~y1 = ~x2 + ~y2.

Then ~x1 − ~x2 = ~y1 − ~y2, so assumption (2) tells us that

~x1 − ~x2 = ~y1 − ~y2 = 0, and we have ~x1 = ~x2 and ~y1 = ~y2.



In this case, we’ll say that V = X ⊕ Y .

For example, R3 = {
[
x
y
z

]
: x + y + z = 0} ⊕ {

[
t
t
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In finite dimensional vector spaces over R, we always have

Rn = L⊕ L⊥, but this isn’t our focus right now.



In this case, we’ll say that V = X ⊕ Y .

For example, R3 = {
[
x
y
z

]
: x + y + z = 0} ⊕ {

[
t
t
t

]
}.

In finite dimensional vector spaces over R, we always have

Rn = L⊕ L⊥, but this isn’t our focus right now.

If ~x1, ~x2, . . . , ~xm is a basis of X, and ~y1, ~y2, . . . , ~yn is a basis of Y ,

then ~x1, ~x2, . . . , ~xm, ~y1, ~y2, . . . , ~yn is a basis of V . In particular,

dimV = dimX + dimY .



In this case, we’ll say that V = X ⊕ Y .

For example, R3 = {
[
x
y
z

]
: x + y + z = 0} ⊕ {

[
t
t
t

]
}.

In finite dimensional vector spaces over R, we always have

Rn = L⊕ L⊥, but this isn’t our focus right now.

If ~x1, ~x2, . . . , ~xm is a basis of X, and ~y1, ~y2, . . . , ~yn is a basis of Y ,

then ~x1, ~x2, . . . , ~xm, ~y1, ~y2, . . . , ~yn is a basis of V . In particular,

dimV = dimX + dimY .

So, when we write vectors in the coordinates of this basis, the

X-entries come first and then the Y -entries. Similarly, if

V1 = X1 ⊕ Y1 and V2 = X2 ⊕ Y2, then linear transformations

V1 → V2 are given by block matrices.X1 → X2 Y1 → X2

X1 → Y2 Y1 → Y2

 .



There is another, related but distinct, construction, called direct

sum. Today, I’ll write � for that other construction, but people

normally call them both ⊕, and I’ll start doing that soon.



There is another, related but distinct, construction, called direct

sum. Today, I’ll write � for that other construction, but people

normally call them both ⊕, and I’ll start doing that soon.

Let X and Y be two vector spaces over the same field F . We define

the vector space X � Y as follows:

• The elements of X � Y are ordered pairs (~x, ~y) with ~x ∈ X and

~y ∈ Y .

• Addition is defined as (~x1, ~y1) + (~x2, ~y2) = (~x1 + ~x2, ~y1 + ~y2).

• Scalar multiplication is defined as c(~x1, ~y1) = (c~x1, c~y1).



There is another, related but distinct, construction, called direct

sum. Today, I’ll write � for that other construction, but people

normally call them both ⊕, and I’ll start doing that soon.

Let X and Y be two vector spaces over the same field F . We define

the vector space X � Y as follows:

• The elements of X � Y are ordered pairs (~x, ~y) with ~x ∈ X and

~y ∈ Y .

• Addition is defined as (~x1, ~y1) + (~x2, ~y2) = (~x1 + ~x2, ~y1 + ~y2).

• Scalar multiplication is defined as c(~x1, ~y1) = (c~x1, c~y1).

So, if X and Y are both subspaces of V and V = X ⊕ Y , then

X � Y is isomorphic to X ⊕ Y , by (~x, ~y) 7→ ~x + ~y. But we are

allowed to talk about X � Y without starting with a subspace that

X and Y are both contained in.



Finally, quotient spaces. Let V be a vector space and let X be a

subspace. Then there are many different subspaces Y with

V = X ⊕ Y .
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subspace. Then there are many different subspaces Y with
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X”?

One answer, for finite dimensional real vector spaces, is X⊥, but

that isn’t ours.
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Define ~v1 ≡ ~v2 mod X if ~v1 − ~v2 ∈ X. Check that
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• If ~v1 ≡ ~v2 and c is a scalar then c~v1 ≡ c~v2.
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Finally, quotient spaces. Let V be a vector space and let X be a

subspace. Then there are many different subspaces Y with

V = X ⊕ Y .

Is there some natural way to talk about “the part of V which isn’t

X”?

Define ~v1 ≡ ~v2 mod X if ~v1 − ~v2 ∈ X. Check that

• If ~v1 ≡ ~v2 and ~w1 ≡ ~w2 then ~v1 + ~w1 ≡ ~v2 + ~w2.

• If ~v1 ≡ ~v2 and c is a scalar then c~v1 ≡ c~v2.

The elements of V/X are the equivalence classes for V/X, with

addition and scalar multiplication defined as above.

If V = X ⊕ Y , then Y −→ V −→ V/X is an isomorphism.


