Let V be a vector space and let $A: V \to V$ be a linear transformation. Let $\vec{v} \in V$ be a vector and λ a scalar such that $A\vec{v} = \lambda \vec{v}$. We say that \vec{v} is a λ -eigenvector of A. For a scalar λ , we will call the set of all λ -eigenvectors of A the λ -eigenspace. In other words, the λ -eigenspace is $\{\vec{v} \in V : A\vec{v} = \lambda \vec{v}\}.$

Wake up: Check that the λ -eigenspace is a subspace of V.

If the λ -eigenspace is not $\{0\}$, we call λ an *eigenvalue* of A. Your textbook uses the old fashioned words "characteristic values" and "characteristic vector".

Problem 1. (1) Show that λ is an eigenvalue of A if and only if Ker($A - \lambda \text{Id}_n$) $\neq {\vec{0}}$. (2) Show that λ is an eigenvalue of A if and only if $\det(A - \lambda \text{Id}_n) = 0$.

The polynomial det($A-tI$ d) is called the *characteristic polynomial* of A. So the roots of the characteristic polynomial (in F) are the eigenvalues.

Problem 2. Let $A = \begin{bmatrix} 7 & 4 \\ -2 & 1 \end{bmatrix}$.

- (1) What are the eigenvalues of A?
- (2) What are the eigenvectors of A?
- **Problem 3.** (1) Let $\lambda_1 \neq \lambda_2$. Let \vec{v}_1 be a nonzero λ_1 -eigenvector and let \vec{v}_2 be a nonzero λ_2 -eigenvector. Show that \vec{v}_1 and \vec{v}_2 are linearly independent. (This is straightforward.)
	- (2) Let λ_1 , λ_2 and λ_3 be distinct scalars.. Let \vec{v}_1 , \vec{v}_2 and \vec{v}_3 be nonzero eigenvectors for λ_1, λ_2 and λ_3 . Show that \vec{v}_1, \vec{v}_2 and \vec{v}_3 are linearly independent. (This takes a bit more thought.)
	- (3) In general, let $\lambda_1, \lambda_2, \ldots, \lambda_k$ be scalars and let $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$ be corrresponding nonzero eigenvectors. Show that $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$ are linearly independent.

To repeat, let V be a finite dimensional vector space and let $A: V \to V$ be a linear transformation. The *characteristic polynomial* of A is $det(xId - A)$. We'll denote it by $\chi_A(x)$.

Problem 4. Let A be an $n \times n$ square matrix of the form $\begin{bmatrix} P & Q \\ 0 & P \end{bmatrix}$ 0 R 1 where P is $k \times k$ and R is $(n-k) \times (n-k)$.

- (1) Show that $\det(A) = \det(P) \det(R)$.
- (2) Show that $\chi_A(x) = \chi_P(x)\chi_R(x)$

Problem 5. To repeat, let V be a finite dimensional vector space and let $A: V \to V$ be a linear transformation. Let U be a subspace of V such that A maps U to U . Show that $\chi_{A|_U}(x)$ divides $\chi_A(x)$.

Problem 6. (1) Show that the characteristic polynomial of $\begin{bmatrix} 0 & -b \\ 1 & -a \end{bmatrix}$ is $x^2 + ax + b$.

(2) Show that the characteristic polynomial of $\begin{bmatrix} 0 & 0 & -c \\ 1 & 0 & -b \end{bmatrix}$ $\begin{array}{c} 1 & 0 & -b \\ 0 & 1 & -a \end{array}$ \int is $x^3 + ax^2 + bx + c$.

(3) Show that the characteristic polynomial of

$$
\begin{bmatrix} 0 & 0 & \cdots & 0 & -a_0 \\ 1 & 0 & \cdots & 0 & -a_1 \\ 0 & 1 & \cdots & 0 & -a_2 \\ 0 & 0 & \cdots & 0 & \vdots \\ 0 & 0 & \cdots & 1 & -a_{n-1} \end{bmatrix}
$$

is $x^n + a_{n-1}x^{n-1} + \cdots + a_2x^2 + a_1x + a_0$.