Eigenbases

Wake up question: What is the matrix of A in the coordinates of the basis $\vec{u}, \vec{v}, \vec{w}$?

Wake up question: What is the matrix of A in the coordinates of the basis $\vec{u}, \vec{v}, \vec{w}$?

$$\begin{bmatrix} 3 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 7 \end{bmatrix}$$

Wake up question: What is the matrix of A in the coordinates of the basis $\vec{u}, \vec{v}, \vec{w}$?

$$\begin{bmatrix} 3 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 7 \end{bmatrix}$$

If S is the matrix with columns $\vec{u}, \vec{v}, \vec{w}$, then we have

$$A = S \begin{bmatrix} 3 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 7 \end{bmatrix} S^{-1}$$

Wake up question: What is the matrix of A in the coordinates of the basis $\vec{u}, \vec{v}, \vec{w}$?

3	0	0
0	5	0
0	0	7

If S is the matrix with columns $\vec{u}, \vec{v}, \vec{w}$, then we have

$$A = S \begin{bmatrix} 3 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 7 \end{bmatrix} S^{-1}.$$

We call $\vec{u}, \vec{v}, \vec{w}$ an *eigenbasis* of A. The general definition is that, if $A: V \to V$ is a linear map, then $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$ is an *eigenbasis* of A if it is a basis of V and the \vec{v}_i are eigenvectors of A. If A has an eigenbasis, we say that A is *diagonalizable*. The general definition is that, if $A: V \to V$ is a linear map, then $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$ is an *eigenbasis of* A if it is a basis of V and the \vec{v}_i are eigenvectors of A. If A has an eigenbasis, we say that A is *diagonalizable*.

Remark: If A has n distinct eigenvalues, then it must have an eigenbasis, because the eigenvectors must be linearly independent. We'll come back to this.

The general definition is that, if $A: V \to V$ is a linear map, then $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$ is an *eigenbasis of* A if it is a basis of V and the \vec{v}_i are eigenvectors of A. If A has an eigenbasis, we say that A is *diagonalizable*.

If $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$ is an eigenbasis of A, with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ then the coordinates of A in the basis $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$ is

$$\begin{bmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & \ddots & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix}$$

In regular coordinates, we have

$$A = \begin{bmatrix} | & | & | & | \\ | & | & | & | \\ \vec{v}_1 \ \vec{v}_2 \ \vec{v}_3 \ \cdots \ \vec{v}_n \\ | & | & | & | \end{bmatrix} \begin{bmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix} \begin{bmatrix} | & | & | & | & | \\ & & & \vdots \\ & & & & | \\ | & & & & | \end{bmatrix}^{-1}$$

Proof: Let \vec{u} , \vec{v} be the eigenbasis. Let \vec{z} be any vector, and write $\vec{z} = a\vec{u} + b\vec{v}$. Then **Proof:** Let \vec{u} , \vec{v} be the eigenbasis. Let \vec{z} be any vector, and write $\vec{z} = a\vec{u} + b\vec{v}$. Then

 $(A - 3\mathrm{Id})(A - 5\mathrm{Id})\vec{z} = (A - 3\mathrm{Id})(A - 5\mathrm{Id})(a\vec{u} + b\vec{v}) = (A - 3\mathrm{Id})(a(3 - 5)\vec{u} + b(5 - 5)\vec{v}) = (A - 3\mathrm{Id})a(3 - 5)\vec{u} = a(3 - 3)(3 - 5)\vec{u} = 0$

Proof: Let \vec{u} , \vec{v} be the eigenbasis. Let \vec{z} be any vector, and write $\vec{z} = a\vec{u} + b\vec{v}$. Then

$$(A - 3\mathrm{Id})(A - 5\mathrm{Id})\vec{z} = (A - 3\mathrm{Id})(A - 5\mathrm{Id})(a\vec{u} + b\vec{v}) = (A - 3\mathrm{Id})(a(3 - 5)\vec{u} + b(5 - 5)\vec{v}) = (A - 3\mathrm{Id})a(3 - 5)\vec{u} = a(3 - 3)(3 - 5)\vec{u} = 0$$

Question: Suppose that A were, instead, a 100×100 matrix with an eigenbasis made up of 50 eigenvectors with eigenvalue 3 and 50 eigenvectors with eigenvalue 5. Would we still have (A - 3Id)(A - 5Id) = 0?

Proof: Let \vec{u} , \vec{v} be the eigenbasis. Let \vec{z} be any vector, and write $\vec{z} = a\vec{u} + b\vec{v}$. Then

$$(A - 3\mathrm{Id})(A - 5\mathrm{Id})\vec{z} = (A - 3\mathrm{Id})(A - 5\mathrm{Id})(a\vec{u} + b\vec{v}) = (A - 3\mathrm{Id})(a(3 - 5)\vec{u} + b(5 - 5)\vec{v}) = (A - 3\mathrm{Id})a(3 - 5)\vec{u} = a(3 - 3)(3 - 5)\vec{u} = 0.$$

Question: Suppose that A were, instead, a 100×100 matrix with an eigenbasis made up of 50 eigenvectors with eigenvalue 3 and 50 eigenvectors with eigenvalue 5. Would we still have (A - 3Id)(A - 5Id) = 0?

Yes! Just need to check that $(A - 3Id)(A - 5Id)\vec{v} = 0$ for each basis vector \vec{v} . If \vec{v} is a 3-eigenvector, then $(A - 3Id)(A - 5Id)\vec{v} = (3 - 3)(3 - 5)\vec{v} = \vec{0}$ and, if \vec{v} is a 5-eigenvector, then $(A - 3Id)(A - 5Id)\vec{v} = (5 - 3)(5 - 5)\vec{v} = \vec{0}$. In general, if A has an eigenbasis with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_r$, then $\prod (A - \lambda_j \text{Id}) = 0$ where we just include each eigenvalue once.

 $\chi_A(x) = \det(x\mathrm{Id} - A).$

The roots of the characteristic polynomial are the eigenvalues of A.

 $\chi_A(x) = \det(x\mathrm{Id} - A).$

The roots of the characteristic polynomial are the eigenvalues of A. Exercise: What is the characteristic polynomial of

 $\begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix}?$

$$\chi_A(x) = \det(x\mathrm{Id} - A).$$

The roots of the characteristic polynomial are the eigenvalues of A. Exercise: What is the characteristic polynomial of

$$\begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix}?$$

$$\det \begin{bmatrix} x-3 & 0 & 0\\ 0 & x-3 & 0\\ 0 & 0 & x-5 \end{bmatrix} = (x-3)(x-3)(x-5).$$

$$\chi_A(x) = \det(x\mathrm{Id} - A).$$

The roots of the characteristic polynomial are the eigenvalues of A. Exercise: What is the characteristic polynomial of

$$\begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix}?$$

$$\det \begin{bmatrix} x-3 & 0 & 0\\ 0 & x-3 & 0\\ 0 & 0 & x-5 \end{bmatrix} = (x-3)(x-3)(x-5).$$

In general, if A has an eigenbasis with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$, then $\chi_A(x) = \prod_{j=1}^n (x - \lambda_j)$, with multiple eigenvalues used multiple times. In short, if A is diagonalizable, then $\chi_A(x) = \prod_{j=1}^n (x - \lambda_j)$ with multiple eigenvalues used multiple times. In this case, we have $\prod(A - \lambda_i \operatorname{Id}) = 0$ even just using each eigenvalue once (and, of course, also if we use them more than once). Minimal polynomials

$$J = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

Geometrically, J is a 90° rotation. It has no nonzero real eigenvectors.

$$J = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

Geometrically, J is a 90° rotation. It has no nonzero real eigenvectors.

We have $J^2 = -\text{Id.}$ So J obeys the polynomial $x^2 + 1 = 0$.

$$J = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

Geometrically, J is a 90° rotation. It has no nonzero real eigenvectors.

We have $J^2 = -\text{Id.}$ So J obeys the polynomial $x^2 + 1 = 0$. We also have $J^3 = -J$ and $J^4 = \text{Id}$, so J also obeys the polynomials $x^3 + x$ and $x^4 - 1$.

$$J = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

Geometrically, J is a 90° rotation. It has no nonzero real eigenvectors.

We have $J^2 = -\text{Id.}$ So J obeys the polynomial $x^2 + 1 = 0$.

We also have $J^3 = -J$ and $J^4 = \text{Id}$, so J also obeys the polynomials $x^3 + x$ and $x^4 - 1$. Notice that $x^3 + x = x(x^2 + 1)$ and $x^4 - 1 = (x^2 - 1)(x^2 + 1)$.

$$J = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

Geometrically, J is a 90° rotation. It has no nonzero real eigenvectors.

We have $J^2 = -\text{Id.}$ So J obeys the polynomial $x^2 + 1 = 0$.

We also have $J^3 = -J$ and $J^4 = \text{Id}$, so J also obeys the polynomials $x^3 + x$ and $x^4 - 1$. Notice that $x^3 + x = x(x^2 + 1)$ and $x^4 - 1 = (x^2 - 1)(x^2 + 1)$.

This is part of a general pattern: Let $A: V \to V$ be a linear operator and let f(x) be 0. If f(A) = 0 and f(x) divides g(x), then g(A) = 0.

Indeed, let g(x) = h(x)f(x). Then g(A) = h(A)f(A) = h(A)0 = 0.

The polynomial $x^2 + 1$ is what is called the *minimal polynomial* of A.

Theorem/Definition: Let V be a finite dimensional vector space and let $A: V \to V$ be a linear map. Then there is a nonzero polynomial m(x) such that m(A) = 0 and, if f(x) is any other polynomial with f(x) = 0, then m(x) divides f(x). We can describe m(x) as the polynomial of minimal degree with m(A) = 0; the polynomial m(x) is called the **minimal polynomial** of A.

- (1) There is a nonzero polynomial f(x) with f(A) = 0.
- (2) If m(x) is the polynomial of minimal degree with m(A) = 0, and f(x) is any other polynomial with f(A) = 0, then m(x)divides f(x).

- (1) There is a nonzero polynomial f(x) with f(A) = 0.
- (2) If m(x) is the polynomial of minimal degree with m(A) = 0, and f(x) is any other polynomial with f(A) = 0, then m(x) divides f(x).

(1) Think of A as an $n \times n$ matrix. Then the powers A^0 , A^1 , A^2 , ..., A^{n^2} are $n^2 + 1$ matrices of size $n \times n$, we can think of these as $n^2 + 1$ vectors in an n^2 dimensional space, so there is a linear relationship

$$f_{n^2}A^{n^2} + f_{n^2-1}A^{n^2-1} + \dots + f_2A^2 + f_1A + f_0$$
Id = 0.

- (1) There is a nonzero polynomial f(x) with f(A) = 0.
- (2) If m(x) is a polynomial of minimal degree with m(A) = 0, and f(x) is any other polynomial with f(A) = 0, then m(x) divides f(x).

(2) Preliminary claim: For any polynomials f(x) and m(x), $m(x) \neq 0$, we can write f(x) = q(x)m(x) + r(x) with $\deg r(x) < \deg m(x)$. Preliminary claim: For any polynomials f(x) and m(x), $m(x) \neq 0$, we can write f(x) = q(x)m(x) + r(x) with deg $r(x) < \deg m(x)$.

Proof: Subtract off multiples of m(x) from f(x) to write f(x) = b(x)m(x) + r(x) with deg r(x) < d.

For example, let $m(x) = x^2 + x + 1$ and let $f(x) = x^4 + 2x^3 + 4x^2 + 8x + 9$. Then

$$f(x) - x^2 m(x) = x^3 + 4x^2 + 8x + 9$$

$$f(x) - x^2 m(x) - xm(x) = 3x^2 + 7x + 9$$

 $f(x) - x^2 m(x) - xm(x) - 3m(x) = 4x + 6$

Preliminary claim: For any polynomials f(x) and m(x), $m(x) \neq 0$, we can write f(x) = q(x)m(x) + r(x) with deg $r(x) < \deg m(x)$.

Proof: Subtract off multiples of m(x) from f(x) to write f(x) = b(x)m(x) + r(x) with deg r(x) < d.

For example, let $m(x) = x^2 + x + 1$ and let $f(x) = x^4 + 2x^3 + 4x^2 + 8x + 9$. Then

 $f(x) - x^2 m(x) = x^3 + 3x^2 + 8x + 9$

$$f(x) - x^2 m(x) - xm(x) = 2x^2 + 7x + 9$$

$$f(x) - x^2 m(x) - xm(x) - 2m(x) = 5x + 7$$

 $f(x) - (x^2 + x + 2)m(x) = 5x + 7$ so $f(x) = (x^2 + x + 3)m(x) + 5x + 7$.

- (1) There is a nonzero polynomial f(x) with f(A) = 0.
- (2) If m(x) is a polynomial of minimal degree with m(A) = 0, and f(x) is any other polynomial with f(A) = 0, then m(x) divides f(x).
- (2) For any polynomials f(x) and m(x), $m(x) \neq 0$, we can write f(x) = q(x)m(x) + r(x) with deg $r(x) < \deg m(x)$.

- (1) There is a nonzero polynomial f(x) with f(A) = 0.
- (2) If m(x) is a polynomial of minimal degree with m(A) = 0, and f(x) is any other polynomial with f(A) = 0, then m(x) divides f(x).
- (2) For any polynomials f(x) and m(x), $m(x) \neq 0$, we can write f(x) = q(x)m(x) + r(x) with deg $r(x) < \deg m(x)$.

If m(A) = 0 and f(A) = 0, then we have $0 = q(A)m(A) + r(A) = q(A) \cdot 0 + r(A) = r(A)$. So, if m(A) = 0and f(A) = 0, then r(A) = 0 as well. This would make r(x) a lower degree polynomial than m(x) with r(A) = 0, contradicting our choice of $m \dots$

- (1) There is a nonzero polynomial f(x) with f(A) = 0.
- (2) If m(x) is a polynomial of minimal degree with m(A) = 0, and f(x) is any other polynomial with f(A) = 0, then m(x) divides f(x).
- (2) For any polynomials f(x) and m(x), $m(x) \neq 0$, we can write f(x) = q(x)m(x) + r(x) with deg $r(x) < \deg m(x)$.

If m(A) = 0 and f(A) = 0, then we have $0 = q(A)m(A) + r(A) = q(A) \cdot 0 + r(A) = r(A)$. So, if m(A) = 0and f(A) = 0, then r(A) = 0 as well. This would make r(x) a lower degree polynomial than m(x) with r(A) = 0, contradicting our choice of $m \dots$ unless r(x) = 0 !

- (1) There is a nonzero polynomial f(x) with f(A) = 0.
- (2) If m(x) is a polynomial of minimal degree with m(A) = 0, and f(x) is any other polynomial with f(A) = 0, then m(x) divides f(x).
- (2) For any polynomials f(x) and m(x), $m(x) \neq 0$, we can write f(x) = q(x)m(x) + r(x) with deg $r(x) < \deg m(x)$.

If m(A) = 0 and f(A) = 0, then we have $0 = q(A)m(A) + r(A) = q(A) \cdot 0 + r(A) = r(A)$. So, if m(A) = 0and f(A) = 0, then r(A) = 0 as well. This would make r(x) a lower degree polynomial than m(x) with r(A) = 0, contradicting our choice of $m \dots$ unless r(x) = 0 !

So r(x) = 0 and m(x) divides f(x). **QED**

One last note: Why do we say that m(x) is **the** minimal polynomial? Could we have more than one?

One last note: Why do we say that m(x) is **the** minimal polynomial? Could we have more than one?

Let $m_1(x)$ and $m_2(x)$ be two polynomials of minimal degree with $m_1(A) = m_2(A) = 0$. Then $m_1(x)$ divides $m_2(x)$ and $m_2(x)$ divides $m_1(x)$, so m_1 and m_2 are the same up to a scalar multiple.

One last note: Why do we say that m(x) is **the** minimal polynomial? Could we have more than one?

Let $m_1(x)$ and $m_2(x)$ be two polynomials of minimal degree with $m_1(A) = m_2(A) = 0$. Then $m_1(x)$ divides $m_2(x)$ and $m_2(x)$ divides $m_1(x)$, so m_1 and m_2 are the same up to a scalar multiple.

So all minimal polynomials are the same up to a scalar multiple; we will usually adopt the normalization of taking the highest degree term of m(x) to have leading degree 1 and call m(x) the minimal polynomial of A.