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We call ~u, ~v, ~w an eigenbasis of A. The general definition is that,

if A : V → V is a linear map, then ~v1, ~v2, . . . , ~vn is an eigenbasis

of A if it is a basis of V and the ~vi are eigenvectors of A. If A has

an eigenbasis, we say that A is diagonalizable .



The general definition is that, if A : V → V is a linear map, then

~v1, ~v2, . . . , ~vn is an eigenbasis of A if it is a basis of V and the ~vi

are eigenvectors of A. If A has an eigenbasis, we say that A is

diagonalizable .

Remark: If A has n distinct eigenvalues, then it must have an

eigenbasis, because the eigenvectors must be linearly independent.

We’ll come back to this.



The general definition is that, if A : V → V is a linear map, then

~v1, ~v2, . . . , ~vn is an eigenbasis of A if it is a basis of V and the ~vi

are eigenvectors of A. If A has an eigenbasis, we say that A is

diagonalizable .

If ~v1, ~v2, . . . , ~vn is an eigenbasis of A, with eigenvalues λ1, λ2, . . . ,

λn then the coordinates of A in the basis ~v1, ~v2, . . . , ~vn is λ1

λ2

. . .
λn

 .
In regular coordinates, we have

A =

 | | | |
| | | |
~v1 ~v2 ~v3 ··· ~vn
| | | |
| | | |
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. . .
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−1
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Proof: Let ~u, ~v be the eigenbasis. Let ~z be any vector, and write

~z = a~u+ b~v. Then

(A− 3Id)(A− 5Id)~z = (A− 3Id)(A− 5Id)(a~u+ b~v) =

(A−3Id)(a(3−5)~u+b(5−5)~v) = (A−3Id)a(3−5)~u = a(3−3)(3−5)~u = 0.

Question: Suppose that A were, instead, a 100× 100 matrix with

an eigenbasis made up of 50 eigenvectors with eigenvalue 3 and 50

eigenvectors with eigenvalue 5. Would we still have

(A− 3Id)(A− 5Id) = 0?

Yes! Just need to check that (A− 3Id)(A− 5Id)~v = 0 for each

basis vector ~v. If ~v is a 3-eigenvector, then

(A− 3Id)(A− 5Id)~v = (3− 3)(3− 5)~v = ~0 and, if ~v is a

5-eigenvector, then (A− 3Id)(A− 5Id)~v = (5− 3)(5− 5)~v = ~0.
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then
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In short, if A is diagonalizable, then χA(x) =
∏n
j=1(x− λj) with

multiple eigenvalues used multiple times. In this case, we have∏
(A− λiId) = 0 even just using each eigenvalue once (and, of

course, also if we use them more than once).
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J =

0 −1

1 0

 .
Geometrically, J is a 90◦ rotation. It has no nonzero real

eigenvectors.

We have J2 = −Id. So J obeys the polynomial x2 + 1 = 0.

We also have J3 = −J and J4 = Id, so J also obeys the

polynomials x3 + x and x4 − 1. Notice that x3 + x = x(x2 + 1) and

x4 − 1 = (x2 − 1)(x2 + 1).

This is part of a general pattern: Let A : V → V be a linear

operator and let f(x) be 0. If f(A) = 0 and f(x) divides g(x), then

g(A) = 0.

Indeed, let g(x) = h(x)f(x). Then g(A) = h(A)f(A) = h(A)0 = 0.



The polynomial x2 + 1 is what is called the minimal polynomial

of A.

Theorem/Definition: Let V be a finite dimensional vector space

and let A : V → V be a linear map. Then there is a nonzero

polynomial m(x) such that m(A) = 0 and, if f(x) is any other

polynomial with f(x) = 0, then m(x) divides f(x). We can

describe m(x) as the polynomial of minimal degree with m(A) = 0;

the polynomial m(x) is called the minimal polynomial of A.
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and f(x) is any other polynomial with f(A) = 0, then m(x)
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(1) Think of A as an n× n matrix. Then the powers A0, A1, A2,

. . . , An
2

are n2 + 1 matrices of size n× n, we can think of these as

n2 + 1 vectors in an n2 dimensional space, so there is a linear

relationship

fn2An
2

+ fn2−1A
n2−1 + · · ·+ f2A

2 + f1A+ f0Id = 0.
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(2) For any polynomials f(x) and m(x), m(x) 6= 0, we can write
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If m(A) = 0 and f(A) = 0, then we have
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So r(x) = 0 and m(x) divides f(x). QED
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One last note: Why do we say that m(x) is the minimal

polynomial? Could we have more than one?

Let m1(x) and m2(x) be two polynomials of minimal degree with

m1(A) = m2(A) = 0. Then m1(x) divides m2(x) and m2(x) divides

m1(x), so m1 and m2 are the same up to a scalar multiple.

So all minimal polynomials are the same up to a scalar multiple; we

will usually adopt the normalization of taking the highest degree

term of m(x) to have leading degree 1 and call m(x) the minimal

polynomial of A.


