Eigenbases

Wake up question: What is the matrix of A in the coordinates of the basis $\vec{u}, \vec{v}, \vec{w}$?

Wake up question: What is the matrix of A in the coordinates of the basis $\vec{u}, \vec{v}, \vec{w}$?

$$
\begin{bmatrix} 3 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 7 \end{bmatrix}
$$

.

Wake up question: What is the matrix of A in the coordinates of the basis $\vec{u}, \vec{v}, \vec{w}$?

$$
\begin{bmatrix} 3 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 7 \end{bmatrix}
$$

.

If S is the matrix with columns $\vec{u}, \vec{v}, \vec{w}$, then we have

$$
A = S \begin{bmatrix} 3 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 7 \end{bmatrix} S^{-1}.
$$

Wake up question: What is the matrix of A in the coordinates of the basis $\vec{u}, \vec{v}, \vec{w}$?

.

If S is the matrix with columns $\vec{u}, \vec{v}, \vec{w}$, then we have

$$
A = S \begin{bmatrix} 3 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 7 \end{bmatrix} S^{-1}.
$$

We call $\vec{u}, \vec{v}, \vec{w}$ an *eigenbasis* of A. The general definition is that, if $A: V \to V$ is a linear map, then $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$ is an *eigenbasis* of A if it is a basis of V and the \vec{v}_i are eigenvectors of A. If A has an eigenbasis, we say that A is **diagonalizable**.

The general definition is that, if $A: V \to V$ is a linear map, then $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$ is an *eigenbasis of A* if it is a basis of V and the \vec{v}_i are eigenvectors of A. If A has an eigenbasis, we say that A is diagonalizable.

Remark: If A has n distinct eigenvalues, then it must have an eigenbasis, because the eigenvectors must be linearly independent. We'll come back to this.

The general definition is that, if $A: V \to V$ is a linear map, then $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$ is an *eigenbasis of A* if it is a basis of V and the \vec{v}_i are eigenvectors of A . If A has an eigenbasis, we say that A is diagonalizable.

If $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$ is an eigenbasis of A, with eigenvalues $\lambda_1, \lambda_2, \ldots,$ λ_n then the coordinates of A in the basis $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$ is

$$
\left[\begin{array}{ccc} \lambda_1 & & \\ & \lambda_2 & \\ & & \ddots \\ & & & \lambda_n \end{array}\right].
$$

In regular coordinates, we have

$$
A = \begin{bmatrix} \vert & \vert & \vert & \vert \\ \frac{1}{\vec{v}_1} & \frac{1}{\vec{v}_2} & \frac{1}{\vec{v}_3} & \cdots & \frac{1}{\vec{v}_n} \\ \vert & \vert & \vert & \vert & \vert \end{bmatrix} \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix} \begin{bmatrix} \vert & \vert & \vert & \vert & \vert \\ \frac{1}{\vec{v}_1} & \frac{1}{\vec{v}_2} & \frac{1}{\vec{v}_3} & \cdots & \frac{1}{\vec{v}_n} \\ \vert & \vert & \vert & \vert & \vert \end{bmatrix}^{-1}
$$

.

Proof: Let \vec{u} , \vec{v} be the eigenbasis. Let \vec{z} be any vector, and write $\vec{z} = a\vec{u} + b\vec{v}$. Then **Proof:** Let \vec{u} , \vec{v} be the eigenbasis. Let \vec{z} be any vector, and write $\vec{z} = a\vec{u} + b\vec{v}$. Then

 $(A - 3Id)(A - 5Id)\vec{z} = (A - 3Id)(A - 5Id)(a\vec{u} + b\vec{v}) =$ $(A-3Id)(a(3-5)\vec{u}+b(5-5)\vec{v}) = (A-3Id)a(3-5)\vec{u} = a(3-3)(3-5)\vec{u} = 0.$

Proof: Let \vec{u} , \vec{v} be the eigenbasis. Let \vec{z} be any vector, and write $\vec{z} = a\vec{u} + b\vec{v}$. Then

$$
(A-3Id)(A-5Id)\vec{z} = (A-3Id)(A-5Id)(a\vec{u}+b\vec{v}) =
$$

$$
(A-3Id)(a(3-5)\vec{u}+b(5-5)\vec{v}) = (A-3Id)a(3-5)\vec{u} = a(3-3)(3-5)\vec{u} = 0.
$$

Question: Suppose that A were, instead, a 100×100 matrix with an eigenbasis made up of 50 eigenvectors with eigenvalue 3 and 50 eigenvectors with eigenvalue 5. Would we still have $(A - 3Id)(A - 5Id) = 0?$

Proof: Let \vec{u} , \vec{v} be the eigenbasis. Let \vec{z} be any vector, and write $\vec{z} = a\vec{u} + b\vec{v}$. Then

$$
(A-3Id)(A-5Id)\vec{z} = (A-3Id)(A-5Id)(a\vec{u}+b\vec{v}) =
$$

$$
(A-3Id)(a(3-5)\vec{u}+b(5-5)\vec{v}) = (A-3Id)a(3-5)\vec{u} = a(3-3)(3-5)\vec{u} = 0.
$$

Question: Suppose that A were, instead, a 100×100 matrix with an eigenbasis made up of 50 eigenvectors with eigenvalue 3 and 50 eigenvectors with eigenvalue 5. Would we still have $(A - 3Id)(A - 5Id) = 0?$

Yes! Just need to check that $(A - 3\text{Id})(A - 5\text{Id})\vec{v} = 0$ for each basis vector \vec{v} . If \vec{v} is a 3-eigenvector, then $(A - 3Id)(A - 5Id)\vec{v} = (3 - 3)(3 - 5)\vec{v} = \vec{0}$ and, if \vec{v} is a 5-eigenvector, then $(A - 3Id)(A - 5Id)\vec{v} = (5 - 3)(5 - 5)\vec{v} = \vec{0}$.

In general, if A has an eigenbasis with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_r$, then $\prod (A - \lambda_j Id) = 0$ where we just include each eigenvalue once.

 $\chi_A(x) = \det(x\mathrm{Id} - A).$

The roots of the characteristic polynomial are the eigenvalues of A.

 $\chi_A(x) = \det(x\mathrm{Id} - A).$

The roots of the characteristic polynomial are the eigenvalues of A. Exercise: What is the characteristic polynomial of

> $\begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \end{bmatrix}$ 0 3 0 $\left[\begin{smallmatrix} 3 & 0 & 0 \ 0 & 3 & 0 \ 0 & 0 & 5 \end{smallmatrix}\right]$?

$$
\chi_A(x) = \det(x\mathrm{Id} - A).
$$

The roots of the characteristic polynomial are the eigenvalues of A. Exercise: What is the characteristic polynomial of

$$
\left[\begin{smallmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{smallmatrix}\right]
$$
?

$$
\det \begin{bmatrix} x-3 & 0 & 0 \\ 0 & x-3 & 0 \\ 0 & 0 & x-5 \end{bmatrix} = (x-3)(x-3)(x-5).
$$

$$
\chi_A(x) = \det(x\mathrm{Id} - A).
$$

The roots of the characteristic polynomial are the eigenvalues of A. Exercise: What is the characteristic polynomial of

$$
\left[\begin{smallmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{smallmatrix}\right]
$$
?

$$
\det \begin{bmatrix} x-3 & 0 & 0 \\ 0 & x-3 & 0 \\ 0 & 0 & x-5 \end{bmatrix} = (x-3)(x-3)(x-5).
$$

In general, if A has an eigenbasis with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$, then $\chi_A(x) = \prod_{j=1}^n (x - \lambda_j)$, with multiple eigenvalues used multiple times.

In short, if A is diagonalizable, then $\chi_A(x) = \prod_{j=1}^n (x - \lambda_j)$ with multiple eigenvalues used multiple times. In this case, we have $\prod (A - \lambda_i \text{Id}) = 0$ even just using each eigenvalue once (and, of course, also if we use them more than once).

Minimal polynomials

$$
J = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}.
$$

Geometrically, J is a 90° rotation. It has no nonzero real eigenvectors.

$$
J = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}.
$$

Geometrically, J is a 90° rotation. It has no nonzero real eigenvectors.

We have $J^2 = -Id$. So J obeys the polynomial $x^2 + 1 = 0$.

$$
J = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}.
$$

Geometrically, J is a 90° rotation. It has no nonzero real eigenvectors.

We have $J^2 = -Id$. So J obeys the polynomial $x^2 + 1 = 0$. We also have $J^3 = -J$ and $J^4 = Id$, so J also obeys the polynomials $x^3 + x$ and $x^4 - 1$.

$$
J = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}.
$$

Geometrically, J is a 90° rotation. It has no nonzero real eigenvectors.

We have $J^2 = -Id$. So J obeys the polynomial $x^2 + 1 = 0$.

We also have $J^3 = -J$ and $J^4 = Id$, so J also obeys the polynomials $x^3 + x$ and $x^4 - 1$. Notice that $x^3 + x = x(x^2 + 1)$ and $x^4 - 1 = (x^2 - 1)(x^2 + 1).$

$$
J = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}.
$$

Geometrically, J is a 90° rotation. It has no nonzero real eigenvectors.

We have $J^2 = -Id$. So J obeys the polynomial $x^2 + 1 = 0$.

We also have $J^3 = -J$ and $J^4 = Id$, so J also obeys the polynomials $x^3 + x$ and $x^4 - 1$. Notice that $x^3 + x = x(x^2 + 1)$ and $x^4 - 1 = (x^2 - 1)(x^2 + 1).$

This is part of a general pattern: Let $A: V \to V$ be a linear operator and let $f(x)$ be 0. If $f(A) = 0$ and $f(x)$ divides $g(x)$, then $g(A) = 0.$

Indeed, let $g(x) = h(x)f(x)$. Then $g(A) = h(A)f(A) = h(A)0 = 0$.

The polynomial $x^2 + 1$ is what is called the *minimal polynomial* of A.

Theorem/Definition: Let V be a finite dimensional vector space and let $A: V \to V$ be a linear map. Then there is a nonzero polynomial $m(x)$ such that $m(A) = 0$ and, if $f(x)$ is any other polynomial with $f(x) = 0$, then $m(x)$ divides $f(x)$. We can describe $m(x)$ as the polynomial of minimal degree with $m(A) = 0$; the polynomial $m(x)$ is called the *minimal polynomial* of A.

- (1) There is a nonzero polynomial $f(x)$ with $f(A) = 0$.
- (2) If $m(x)$ is the polynomial of minimal degree with $m(A) = 0$, and $f(x)$ is any other polynomial with $f(A) = 0$, then $m(x)$ divides $f(x)$.

- (1) There is a nonzero polynomial $f(x)$ with $f(A) = 0$.
- (2) If $m(x)$ is the polynomial of minimal degree with $m(A) = 0$, and $f(x)$ is any other polynomial with $f(A) = 0$, then $m(x)$ divides $f(x)$.

(1) Think of A as an $n \times n$ matrix. Then the powers A^0 , A^1 , A^2 , \ldots , A^{n^2} are $n^2 + 1$ matrices of size $n \times n$, we can think of these as $n^2 + 1$ vectors in an n^2 dimensional space, so there is a linear relationship

$$
f_{n^2}A^{n^2} + f_{n^2-1}A^{n^2-1} + \cdots + f_2A^2 + f_1A + f_0\mathrm{Id} = 0.
$$

- (1) There is a nonzero polynomial $f(x)$ with $f(A) = 0$.
- (2) If $m(x)$ is a polynomial of minimal degree with $m(A) = 0$, and $f(x)$ is any other polynomial with $f(A) = 0$, then $m(x)$ divides $f(x)$.

(2) Preliminary claim: For any polynomials $f(x)$ and $m(x)$, $m(x) \neq 0$, we can write $f(x) = q(x)m(x) + r(x)$ with $\deg r(x) < \deg m(x)$.

Preliminary claim: For any polynomials $f(x)$ and $m(x)$, $m(x) \neq 0$, we can write $f(x) = q(x)m(x) + r(x)$ with $\deg r(x) < \deg m(x)$.

Proof: Subtract off multiples of $m(x)$ from $f(x)$ to write $f(x) = b(x)m(x) + r(x)$ with deg $r(x) < d$.

For example, let $m(x) = x^2 + x + 1$ and let $f(x) = x^4 + 2x^3 + 4x^2 + 8x + 9$. Then

$$
f(x) - x^2 m(x) = x^3 + 4x^2 + 8x + 9
$$

$$
f(x) - x^2 m(x) - x m(x) = 3x^2 + 7x + 9
$$

 $f(x) - x^2m(x) - xm(x) - 3m(x) = 4x + 6$

Preliminary claim: For any polynomials $f(x)$ and $m(x)$, $m(x) \neq 0$, we can write $f(x) = q(x)m(x) + r(x)$ with $\deg r(x) < \deg m(x)$.

Proof: Subtract off multiples of $m(x)$ from $f(x)$ to write $f(x) = b(x)m(x) + r(x)$ with deg $r(x) < d$.

For example, let $m(x) = x^2 + x + 1$ and let $f(x) = x^4 + 2x^3 + 4x^2 + 8x + 9$. Then

$$
f(x) - x^2 m(x) = x^3 + 3x^2 + 8x + 9
$$

$$
f(x) - x^2 m(x) - x m(x) = 2x^2 + 7x + 9
$$

$$
f(x) - x^2 m(x) - x m(x) - 2m(x) = 5x + 7
$$

 $f(x) - (x^2 + x + 2)m(x) = 5x + 7$ so $f(x) = (x^2 + x + 3)m(x) + 5x + 7$.

- (1) There is a nonzero polynomial $f(x)$ with $f(A) = 0$.
- (2) If $m(x)$ is a polynomial of minimal degree with $m(A) = 0$, and $f(x)$ is any other polynomial with $f(A) = 0$, then $m(x)$ divides $f(x)$.
- (2) For any polynomials $f(x)$ and $m(x)$, $m(x) \neq 0$, we can write $f(x) = q(x)m(x) + r(x)$ with $\deg r(x) < \deg m(x)$.

- (1) There is a nonzero polynomial $f(x)$ with $f(A) = 0$.
- (2) If $m(x)$ is a polynomial of minimal degree with $m(A) = 0$, and $f(x)$ is any other polynomial with $f(A) = 0$, then $m(x)$ divides $f(x)$.
- (2) For any polynomials $f(x)$ and $m(x)$, $m(x) \neq 0$, we can write $f(x) = q(x)m(x) + r(x)$ with $\deg r(x) < \deg m(x)$.

If $m(A) = 0$ and $f(A) = 0$, then we have $0 = q(A)m(A) + r(A) = q(A) \cdot 0 + r(A) = r(A)$. So, if $m(A) = 0$ and $f(A) = 0$, then $r(A) = 0$ as well. This would make $r(x)$ a lower degree polynomial than $m(x)$ with $r(A) = 0$, contradicting our choice of $m \ldots$

- (1) There is a nonzero polynomial $f(x)$ with $f(A) = 0$.
- (2) If $m(x)$ is a polynomial of minimal degree with $m(A) = 0$, and $f(x)$ is any other polynomial with $f(A) = 0$, then $m(x)$ divides $f(x)$.
- (2) For any polynomials $f(x)$ and $m(x)$, $m(x) \neq 0$, we can write $f(x) = q(x)m(x) + r(x)$ with $\deg r(x) < \deg m(x)$.

If $m(A) = 0$ and $f(A) = 0$, then we have $0 = q(A)m(A) + r(A) = q(A) \cdot 0 + r(A) = r(A)$. So, if $m(A) = 0$ and $f(A) = 0$, then $r(A) = 0$ as well. This would make $r(x)$ a lower degree polynomial than $m(x)$ with $r(A) = 0$, contradicting our choice of $m \dots$ unless $r(x) = 0$!

- (1) There is a nonzero polynomial $f(x)$ with $f(A) = 0$.
- (2) If $m(x)$ is a polynomial of minimal degree with $m(A) = 0$, and $f(x)$ is any other polynomial with $f(A) = 0$, then $m(x)$ divides $f(x)$.
- (2) For any polynomials $f(x)$ and $m(x)$, $m(x) \neq 0$, we can write $f(x) = q(x)m(x) + r(x)$ with $\deg r(x) < \deg m(x)$.

If $m(A) = 0$ and $f(A) = 0$, then we have $0 = q(A)m(A) + r(A) = q(A) \cdot 0 + r(A) = r(A)$. So, if $m(A) = 0$ and $f(A) = 0$, then $r(A) = 0$ as well. This would make $r(x)$ a lower degree polynomial than $m(x)$ with $r(A) = 0$, contradicting our choice of $m \dots$ unless $r(x) = 0$!

So $r(x) = 0$ and $m(x)$ divides $f(x)$. **QED**

One last note: Why do we say that $m(x)$ is **the** minimal polynomial? Could we have more than one?

One last note: Why do we say that $m(x)$ is **the** minimal polynomial? Could we have more than one?

Let $m_1(x)$ and $m_2(x)$ be two polynomials of minimal degree with $m_1(A) = m_2(A) = 0$. Then $m_1(x)$ divides $m_2(x)$ and $m_2(x)$ divides $m_1(x)$, so m_1 and m_2 are the same up to a scalar multiple.

One last note: Why do we say that $m(x)$ is **the** minimal polynomial? Could we have more than one?

Let $m_1(x)$ and $m_2(x)$ be two polynomials of minimal degree with $m_1(A) = m_2(A) = 0$. Then $m_1(x)$ divides $m_2(x)$ and $m_2(x)$ divides $m_1(x)$, so m_1 and m_2 are the same up to a scalar multiple.

So all minimal polynomials are the same up to a scalar multiple; we will usually adopt the normalization of taking the highest degree term of $m(x)$ to have leading degree 1 and call $m(x)$ the minimal polynomial of A.