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We’ve seen a lot of concepts:

• Eigenvectors and eigenvalues

A vector ~v with A~v = λ~v is called an eigenvector. We call λ the

eigenvalue.

• Eigenbasis

A basis ~v1, ~v2, . . . , ~vn of eigenvectors. If ~v1, ~v2, . . . , ~vn are

nonzero eigenvectors with distinct eigenvalues, they must be an

eigenbasis.

• Characteristic polynomial

The polynomial χA(x) = det(xId−A). Its roots are the

eigenvalues.

• Minimal polynomial

The lowest degree polynomial m(x) with m(A) = 0. If f(x) is

any other polynomial with f(A) = 0, then m(x) divides f(x).



Let V be a finite dimensional vector space, A : V → V a linear

transformation, χA(x) the characteristic polynomial and mA(x) the

minimal polynomial.

Theorem: Let λ be a scalar. Then the following are equivalent:

(1) λ is an eigenvalue of A.

(2) λ is a root of χA(x).

(3) λ is a root of mA(x).

Question: Which parts have we already proved? How did we

prove them?
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(1) λ is an eigenvalue of A.
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(1)⇐⇒ (2): We have χA(λ) = 0 if and only if det(A− λId) 6= 0 if

and only if there is a vector ~v with (A− λId)~v = ~0 if and only if

there is a vector ~v with A~v = λ~v.



Theorem: Let λ be a scalar. Then the following are equivalent:

(1) λ is an eigenvalue of A.

(2) λ is a root of χA(x).

(3) λ is a root of mA(x).

(1)⇐⇒ (2): We have χA(λ) = 0 if and only if det(A− λId) 6= 0 if

and only if there is a vector ~v with (A− λId)~v = ~0 if and only if

there is a vector ~v with A~v = λ~v.

(1) =⇒ (3): Let ~v be a nonzero λ-eigenvector. For any polynomial

f(x), we have f(A)~v = f(λ)~v. In particular, mA(A)~v = mA(λ)~v.

But mA(A)~v = 0~v = ~0, so mA(λ) = 0.

(3) =⇒ (1): Since λ is a root of mA(x), we can write

mA(x) = (x− λ)f(x). Suppose that λ is not an eigenvalue of A.

Then A− λId is invertible. We have mA(A) = (A− λId)f(A) = 0.

So f(A) = (A− λId)−10 = 0. But deg f < degmA, a contradiction.



Theorem: Let λ be a scalar. Then the following are equivalent:

(1) λ is an eigenvalue of A.

(2) λ is a root of χA(x).

(3) λ is a root of mA(x).

So mA(x) and χA(x) have the same roots, but maybe with different

multiplicities. Our main result for today improves (3) =⇒ (2):

The Cayley-Hamilton theorem We have χA(A) = 0 and,

therefore, mA(x) divides χA(x).
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The Cayley-Hamilton theorem We have χA(A) = 0 and,

therefore, mA(x) divides χA(x).

Let’s start with an example, to make it clear what we are proving.

Let A = [ 1 2
3 4 ]. The characteristic polynomial is

(x− 1)(x− 4)− 2 · 3 = x2 − 5x+ 4− 6 = x2 − 5x− 2.

We have

[ 1 2
3 4 ]

2 − 5 [ 1 2
3 4 ]− 2 [ 1 0

0 1 ] = [ 7 10
15 22 ]− [ 5 10

15 20 ]− [ 2 0
0 2 ] = [ 0 0

0 0 ] .



For diagonalizable matrices:

Suppose that A =

 λ1

λ2

. . .
λn

.

Then χA(x) = det(xId−A) = (x− λ1)(x− λ2) · · · (x− λn).

For each eigenvector ~vi, we have (A− λ1)(A− λ2) · · · (A− λn)~vi =

(λi − λ1)(λi − λ2) · · · (λi − λi) · · · (λi − λn)~vi = 0~vi = ~0. So

χA(A)~vi = ~0



Another important case

Suppose that there is a vector ~v such that ~v, A~v, A2~v, . . . , An−1~v

is a basis of V . In this case, we must have

An~v = c0~v + c1A~v + c2A
2~v + · · ·+ cn−1A

n−1~v.

Question: What is the matrix of A in the basis ~v, A~v, A2~v, . . . ,

An−1~v?



Another important case

Suppose that there is a vector ~v such that ~v, A~v, A2~v, . . . , An−1~v

is a basis of V . In this case, we must have

An~v = c0~v + c1A~v + c2A
2~v + · · ·+ cn−1A

n−1~v.

Question: What is the matrix of A in the basis ~v, A~v, A2~v, . . . ,

An−1~v?



c0

1 c1

1 c2
. . .

...

1 cn−2

1 cn−1





What is the characteristic polynomial?

We expand along the top row:

det


x −c0
−1 x −c1

−1 x −c2
. . .

. . .
...

−1 x −cn−2

−1 x−cn−1

 =

xdet

 x −c1
−1 x −c2

. . .
. . .

...
−1 x −cn−2

−1 x−cn−1

+ (−1)nc0 det

−1 x
−1 x

. . .
. . .

−1 x
−1

 =

xdet

 x −c1
−1 x −c2

. . .
. . .

...
−1 x −cn−2

−1 x−cn−1

− c0.



What is the characteristic polynomial?

det


x −c0
−1 x −c1

−1 x −c2
. . .

. . .
...

−1 x −cn−2

−1 x−cn−1

 =

xdet

 x −c1
−1 x −c2

. . .
. . .

...
−1 x −cn−2

−1 x−cn−1

+ (−1)nc0 det

−1 x
−1 x

. . .
. . .

−1 x
−1

 =

xdet

 x −c1
−1 x −c2

. . .
. . .

...
−1 x −cn−2

−1 x−cn−1

− c0.
Continuing:

x2 det

[
x −c2
. . .

. . .
...

−1 x −cn−2

]
− c1x− c0 = · · ·

= xn − cn−1x
n−1 − · · · − c2x2 − c1x− c0.



To summarize the previous computation: If there is a vector ~v such

that ~v, A~v, A2~v, . . . , An−1~v is a basis of V , and

An~v = c0~v + c1A~v + c2A
2~v + · · ·+ cn−1A

n−1~v

then the characteristic polynomial of A is

xn − cn−1x
n−1 − · · · − c2x2 − c1x− c0.



To summarize the previous computation: If there is a vector ~v such
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then the characteristic polynomial of A is

xn − cn−1x
n−1 − · · · − c2x2 − c1x− c0.

So we want to show that

An − cn−1A
n−1 − · · · − c2A2 − c1A− c0 = 0.



To summarize the previous computation: If there is a vector ~v such

that ~v, A~v, A2~v, . . . , An−1~v is a basis of V , and

An~v = c0~v + c1A~v + c2A
2~v + · · ·+ cn−1A

n−1~v

then the characteristic polynomial of A is

xn − cn−1x
n−1 − · · · − c2x2 − c1x− c0.

So we want to show that

An − cn−1A
n−1 − · · · − c2A2 − c1A− c0 = 0.

We just need to check that An − cn−1A
n−1 − · · · − c2A2 − c1A− c0

kills each basis vector. We certainly have(
An − cn−1A

n−1 − · · · − c2A2 − c1A− c0
)
~v =

An~v − cn−1A
n−1~v − · · · − c2A2~v − c1A~v − c0~v = ~0.



We just need to check that An − cn−1A
n−1 − · · · − c2A2 − c1A− c0

kills each basis vector. We certainly have(
An − cn−1A

n−1 − · · · − c2A2 − c1A− c0
)
~v =

An~v − cn−1A
n−1~v − · · · − c2A2~v − c1A~v − c0~v = ~0.

Working a bit harder,(
An − cn−1A

n−1 − · · · − c2A2 − c1A− c0
)

(Aj~v) =

Aj
(
An − cn−1A

n−1 − · · · − c2A2 − c1A− c0
)
~v = Aj~0 = ~0.



Why did we spend so long on this special case? Because it is going

to be the heart of our proof of the general case. We now prove the

Cayley-Hamilton theorem by induction on n.



We now prove the Cayley-Hamilton theorem by induction on n.

The base case is n = 1, so A = [ a ], the characteristic polynomial is

x− a, and we have A− aId = 0 as desired.



We now prove the Cayley-Hamilton theorem by induction on n.

The base case is n = 1, so A = [ a ], the characteristic polynomial is

x− a, and we have A− aId = 0 as desired.

Now, choose any nonzero vector ~v and start computing ~v, A~v, A2~v

until the first point where we have a linear dependency

Am~v = cm−1A
m−1~v + · · ·+ c2A

2~v + c1A~v + c0~v.

Completing ~v, A~v, A2~v, . . . , Am−1~v to a basis, the operator A

looks like P Q

0 R

 where P =


c0

1 c1
1 c2

. . .
...

1 cm−2

1 cm−1

 .



A =

P Q

0 R

 where P =


c0

1 c1
1 c2

. . .
...

1 cm−2

1 cm−1

 .
By our previous computation, χP (P ) = 0. If P is the whole matrix

A, we are done.



A =

P Q

0 R

 where P =


c0

1 c1
1 c2

. . .
...

1 cm−2

1 cm−1

 .
By our previous computation, χP (P ) = 0. If P is the whole matrix

A, we are done.

If not, by induction, we also have χR(R) = 0. And we have

χA(x) = χP (x)χR(x). So

χA(A) = χA
([
P Q
0 R

])
= χP

([
P Q
0 R

])
χR
([
P Q
0 R

])
=[

χP (P ) ∗
0 ∗

] [ ∗ ∗
0 χR(R)

]
= [ 0 ∗

0 ∗ ] [ ∗ ∗
0 0 ] = [ 0 0

0 0 ] .



A =

P Q

0 R

 where P =


c0

1 c1
1 c2

. . .
...

1 cm−2

1 cm−1

 .
By our previous computation, χP (P ) = 0. If P is the whole matrix

A, we are done.

If not, by induction, we also have χR(R) = 0. And we have

χA(x) = χP (x)χR(x). So

χA(A) = χA
([
P Q
0 R

])
= χP

([
P Q
0 R

])
χR
([
P Q
0 R

])
=[

χP (P ) ∗
0 ∗

] [ ∗ ∗
0 χR(R)

]
= [ 0 ∗

0 ∗ ] [ ∗ ∗
0 0 ] = [ 0 0

0 0 ] .

QED


