The Cayley-Hamilton theorem
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We'’ve seen a lot of concepts:

Eigenvectors and eigenvalues
A vector v with Av = \v is called an eigenvector. We call A the

eigenvalue.

Eigenbasis
A basis v, v, ..., U, of eigenvectors. If v7, v9, ..., v, are
nonzero eigenvectors with distinct eigenvalues, they must be an

eigenbasis.

Characteristic polynomial

The polynomial x 4(x) = det(zld — A). Its roots are the

eigenvalues.

Minimal polynomial
The lowest degree polynomial m(z) with m(A) = 0. If f(x) is
any other polynomial with f(A) = 0, then m(x) divides f(x).




Let V be a finite dimensional vector space, A:V — V a linear

transformation, x4 (x) the characteristic polynomial and m 4 (z) the
minimal polynomial.

Theorem: Let A be a scalar. Then the following are equivalent:
(1) A is an eigenvalue of A.

(2) Xis aroot of xa(x).

(3) Ais aroot of ma(x).

Question: Which parts have we already proved? How did we
prove them?




Theorem: Let A be a scalar. Then the following are equivalent:

1) M is an eigenvalue of A.

2) Ais aroot of xa(x).
)

3) A is a root of my(x).

(
(
(
(1

) <= (2): We have y4(\) = 0 if and only if det(A — AId) # O if
and only if there is a vector ¥ with (A — AId)7 = 0 if and only if
there is a vector v with Av = Av.




Theorem: Let A be a scalar. Then the following are equivalent:
(1) A is an eigenvalue of A.

(2) Ais aroot of xa(x).

(3) Ais aroot of ma(x).

(1) <= (2): We have xa(A) = 0 if and only if det(A — A\Id) # 0 if
and only if there is a vector ¥ with (A — A\d)? = 0 if and only if

there is a vector U with AU = \v.

(1) = (3): Let ¥ be a nonzero \-eigenvector. For any polynomial
f(x), we have f(A)Y = f(A)U. In particular, m4(A)U = ma(A\)v.
But ma(A)T =07 =0, so ma(X) = 0.

(3) = (1): Since A is a root of m4(x), we can write

ma(x) = (xr — A) f(z). Suppose that A is not an eigenvalue of A.
Then A — AId is invertible. We have ma(A) = (A — Ald) f(A) = 0.
So f(A) = (A — Md)~'0 = 0. But deg f < degm 4, a contradiction.




Theorem: Let A be a scalar. Then the following are equivalent:
(1) A is an eigenvalue of A.
(2) Ais aroot of xa(x).

(3) Ais aroot of ma(x).

So ma(x) and x4 (x) have the same roots, but maybe with different

multiplicities. Our main result for today improves (3) = (2):

The Cayley-Hamilton theorem We have x4 (A) = 0 and,
therefore, ma(x) divides ya(x).




The Cayley-Hamilton theorem We have x4(A) = 0 and,
therefore, m 4(x) divides x ().




The Cayley-Hamilton theorem We have x4(A) = 0 and,
therefore, m 4(x) divides x ().

Let’s start with an example, to make it clear what we are proving.

Let A =[}2]. The characteristic polynomial is
(x—1)(x—4)—2-3=2°—-5x+4—6=212°—5x—2.

We have




For diagonalizable matrices:

N _
A2
Suppose that A =

Then xa(x) = det(a;Id —A) = (_:1: — A )=o) (T — Ap).

For each eigenvector v;, we have (A — A1)(A — Xg)---
xa(A)v; = 0




Another important case

Suppose that there is a vector ¥ such that ¥, Av¥, A%7, ..., A" 17

is a basis of V. In this case, we must have

Ang — 6017+ 61A77—|— C2A2?7+ <. —|— Cn_lAn_lf(_)).

Question: What is the matrix of A in the basis @, Av, A%7, ...,
ALy




Another important case

Suppose that there is a vector ¥ such that ¥, Av, A%7, ..., A" 17

is a basis of V. In this case, we must have

A" = coU + 1 AV + o AT+ -+ - + 1 A" 10

Question: What is the matrix of A in the basis ©, Av, A%7, ...,
A" 1?




What is the characteristic polynomial?

We expand along the top row:

- X
—1 x
—1 x




What is the characteristic polynomial?

Continuing;:

e —C2

—1x —cp_9o

— " — o, 12" — o —eox® — e — .




To summarize the previous computation: If there is a vector ¥ such
that v, Av, A%¥, ..., A" ¥ is a basis of V, and

AU = 60?7—|— 61A27+ CQA227—|- s Cn_lAn_l’U

then the characteristic polynomial of A is

n 1

" — ¢, 1x" Tl — = eox? — e1x — .




To summarize the previous computation: If there is a vector ¥ such
that v, Av, A%¥, ..., A" ¥ is a basis of V, and

AU = 60?7—|— 61A27+ CQA227—|- s Cn_lAn_l’U

then the characteristic polynomial of A is

" — ¢, 1x" Tl — = eox? — e1x — .

So we want to show that

A" — Cn_lAn_l — o — 62A2 — ClA — Co — 0.




To summarize the previous computation: If there is a vector ¥ such
that v, Av, A%V, ..., A" ¥ is a basis of V, and

AU = 0017—|— 61A17—|— CQA217—|— s 1 Cn_lAn_l’D’
then the characteristic polynomial of A is

" — ¢, 1x" T — s —eox? — e — .

So we want to show that

A" — Cn_lAn_l — s — CQA2 — ClA — Co = 0.

We just need to check that A™ — ¢, 1 A"t — . — A% — ;A — ¢y
kills each basis vector. We certainly have




We just need to check that A™ —¢,,_1 A"} — .. — A% —c; A — ¢y
kills each basis vector. We certainly have

(An — Cn_lAn_l — 02A2 — ClA — CO) U=

AT — Cn_lAn_l_)— T — CQA2?7— ClA’J— Co

Working a bit harder,

(An — Cn_lAn_l — s C2A2 — ClA — Co) (AJ’U) =




Why did we spend so long on this special case? Because it is going

to be the heart of our proof of the general case. We now prove the

Cayley-Hamilton theorem by induction on n.




We now prove the Cayley-Hamilton theorem by induction on n.

The base case is n =1, so A = [a], the characteristic polynomial is

x — a, and we have A — ald = 0 as desired.




We now prove the Cayley-Hamilton theorem by induction on n.

The base case is n =1, so A = [a], the characteristic polynomial is
x — a, and we have A — ald = 0 as desired.

Now, choose any nonzero vector ¥ and start computing v, Av, A%v

until the first point where we have a linear dependency

AU = Cm_lAm_1?7—|— cee 62A217—|— 01A17—|— 6017.

Completing 7, AT, A%?%, ..., A™ ¥ to a basis, the operator A
looks like

where P =




1 Cm—2
1 cpp—1 _

P Q
0 R

By our previous computation, xp(P) = 0. If P is the whole matrix
A, we are done.




P Q
0 R

1l cm—1 4

By our previous computation, xp(P) = 0. If P is the whole matrix
A, we are done.

If not, by induction, we also have yr(R) = 0. And we have
xa(z) = xp(x)xr(z). So

xa(A) =xa([g2])=xr ([T 2] xr([s?]

[XP(P) *

):
0 *} [SXR?R)} — [8

6ol =00l




P Q
0 R

1l cm—1 4

By our previous computation, xp(P) = 0. If P is the whole matrix
A, we are done.

If not, by induction, we also have yr(R) = 0. And we have
xa(z) = xp(x)xr(z). So

xa(A) =xa([g2])=xr ([T 2] xr([s?]

s 2] [0 xnmy ] = |

QED

) =

6ol =00l




