Inner products

Let V be a vector space over a field F . Recall that a bilinear form is a function B which takes as input two vectors \vec{v} and \vec{w} and is linear in each input, meaning

> $B(\vec{v}_1 + \vec{v}_2, \vec{w}) = B(\vec{v}_1, \vec{w}) + B(\vec{v}_2, \vec{w})$ $B(\vec{v}, \vec{w}_1 + \vec{w}_2) = B(\vec{v}, \vec{w}_1) + B(\vec{v}, \vec{w}_2)$ $B(c\vec{v}, \vec{w}) = B(\vec{v}, c\vec{w}) = cB(\vec{v}, \vec{w}).$

Let V be a vector space over a field F . Recall that a bilinear form is a function B which takes as input two vectors \vec{v} and \vec{w} and is linear in each input, meaning

> $B(\vec{v}_1 + \vec{v}_2, \vec{w}) = B(\vec{v}_1, \vec{w}) + B(\vec{v}_2, \vec{w})$ $B(\vec{v}, \vec{w}_1 + \vec{w}_2) = B(\vec{v}, \vec{w}_1) + B(\vec{v}, \vec{w}_2)$ $B(c\vec{v}, \vec{w}) = B(\vec{v}, c\vec{w}) = cB(\vec{v}, \vec{w}).$

The bilinear form B is called **symmetric** if $B(\vec{v}, \vec{w}) = B(\vec{w}, \vec{v})$.

We now switch to the field being the real numbers. In this case, we can define a special kind of symmetric bilinear form: A symmetric bilinear form is called **positive definite** if, for all nonzero vectors \vec{v} , we ave $B(\vec{v}, \vec{v}) > 0$.

A positive definite symmetric bilinear form is called an *inner* **product**. We'll often denote an inner product as $(\vec{v}|\vec{w})$, $\langle \vec{v}, \vec{w} \rangle$ or $\vec{v} \cdot \vec{w}$.

We now switch to the field being the real numbers. In this case, we can define a special kind of symmetric bilinear form: A symmetric bilinear form is called **positive definite** if, for all nonzero vectors \vec{v} , we have $B(\vec{v}, \vec{v}) > 0$.

A positive definite symmetric bilinear form is called an *inner* **product**. We'll often denote an inner product as $(\vec{v}|\vec{w})$, $\langle \vec{v}, \vec{w} \rangle$ or $\vec{v} \cdot \vec{w}$.

There is a variant for complex numbers coming soon.

Let V be a vector space with an inner product $B($, $).$

For a vector \vec{v} in B, we put $|\vec{v}| = \sqrt{B(\vec{v}, \vec{v})}.$

For two nonzero vectors \vec{x} and \vec{y} , we define the angle between \vec{x} and \vec{y} to be $\cos^{-1} \frac{B(\vec{x}, \vec{y})}{|\vec{x}| |\vec{y}|}.$

For two nonzero vectors \vec{v} and \vec{y} we define the angle between \vec{x} and \vec{y} to be $\cos^{-1} \frac{B(\vec{x}, \vec{y})}{|\vec{x}| |\vec{y}|}.$

To see that this is defined, we want to prove the

Cauchy-Schwartz inequality: For any vectors \vec{x} and \vec{y} , we have $|B(\vec{x}, \vec{y})| \leq |\vec{x}| |\vec{y}|$. Moreover, we have equality if and only if \vec{x} and \vec{y} are parallel.

For two nonzero vectors \vec{v} and \vec{y} , we define the angle between \vec{x} and \vec{y} to be $\cos^{-1} \frac{B(\vec{x}, \vec{y})}{|\vec{x}| |\vec{y}|}.$

To see that this is defined, we want to prove the

Cauchy-Schwartz inequality: For any vectors \vec{x} and \vec{y} , we have $|B(\vec{x}, \vec{y})| \leq |\vec{x}| |\vec{y}|$. Moreover, we have equality if and only if \vec{x} and \vec{y} are parallel.

Proof: For simplicity, assume that \vec{x} and \vec{y} are nonzero. Put $p = |\vec{x}|, q = |\vec{y}|$ and put $\vec{u} = \frac{\vec{x}}{n}$ $\frac{\vec{x}}{p}$ and $\vec{v} = \frac{\vec{y}}{q}$ $\frac{y}{q}$, so $\vec{x} = p\vec{u}$ and $\vec{y} = q\vec{v}$ with $|\vec{u}| = |\vec{v}| = 1$.

Then $B(\vec{u} \pm \vec{v}, \vec{u} \pm \vec{v}) = B(\vec{u}, \vec{u}) \pm 2B(\vec{u}, \vec{v}) + B(\vec{v}, \vec{v}) \geq 0$. We have $B(\vec{u}, \vec{u}) = B(\vec{v}, \vec{v}) = 1$, so this gives $2 \pm 2B(\vec{u}, \vec{v}) \geq 0$. So $|B(\vec{u}, \vec{v})| \leq 1$ as desired. Moreover, we have equality if and only if $\vec{u} = \mp \vec{v}$.

For two nonzero vectors \vec{v} and \vec{y} , we define the angle between \vec{x} and \vec{y} to be $\cos^{-1} \frac{B(\vec{x}, \vec{y})}{|\vec{x}| |\vec{y}|}.$

Thus, $\angle(\vec{x}, \vec{y})$ is **acute** if $B(\vec{x}, \vec{y}) > 0$, is **obtuse** if $B(\vec{x}, \vec{y}) < 0$ and is a right angle if $B(\vec{x}, \vec{y}) = 0$.

We say that \vec{x} and \vec{y} are *perpendicular* or *orthogonal* if $B(\vec{x}, \vec{y}) = 0$. We say that two subspaces X and Y of V are **perpendicular** or **orthogonal** if $B(\vec{x}, \vec{y}) = 0$ for all $\vec{x} \in X$ and $\vec{y} \in Y.$

We say that two subspaces X and Y of V are **perpendicular** or orthogonal if $B(\vec{x}, \vec{y}) = 0$ for all $\vec{x} \in X$ and $\vec{y} \in Y$.

Problem Check that, if X and Y are orthogonal, then $X \cap Y = \{\vec{0}\}.$

We say that two subspaces X and Y of V are **perpendicular** or orthogonal if $B(\vec{x}, \vec{y}) = 0$ for all $\vec{x} \in X$ and $\vec{y} \in Y$.

Problem Check that, if X and Y are orthogonal, then $X \cap Y = \{\vec{0}\}.$

This suggests that we will often have orthogonal direct sums. Recall that, when we have a direct sum $V = X \oplus Y$, we get linear maps $p_X : V \to X$ and $p_Y : V \to Y$ such that $v = p_X(v) + p_X(v)$.

Problem If $V = X \oplus X^{\perp}$, show that $p_X(v)$ is the closest point to v in X .

In order to compute and discuss orthogonal projections, we introduce the notion of **orthonormal bases**. A list of vector \vec{u}_1 , \vec{u}_2, \ldots , is called **orthonormal** if

$$
B(\vec{u}_i, \vec{u}_j) = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}
$$

.

Here are the main results about orthonormal vectors:

- If $\vec{u}_1, \vec{u}_2, \ldots$, are orthonormal, then they are linearly independent.
- If $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_n$ is an orthonormal basis of $X \subset V$, then p_X is given by the formula

$$
p_X(\vec{v}) = \sum_{i=1}^n B(\vec{u}_i, \vec{v}) \vec{u}_i.
$$

- In the above case, $X^{\perp} =$ Ker p_X , and $V = X \oplus X^{\perp}$.
- A finite dimensional vector space, with an inner product, always has an orthonormal basis.

We'll head to Miro to prove the first three ...

So, take an $n-1$ dimensional subspace X of V. By induction, X has an orthonormal basis $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_{n-1}$.

So, take an $n-1$ dimensional subspace X of V. By induction, X has an orthonormal basis $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_{n-1}$.

Let \vec{v} be any vector not in X. Put $\vec{u} = \vec{v} - p_X(\vec{v})$. Then \vec{u} is orthogonal to X and (since $\vec{v} \notin X$), \vec{u} is not 0. This means that we have

$$
B(\vec{u}_1, \vec{u}) = B(\vec{u}_2, \vec{u}) = \dots = B(\vec{u}_{n-1}, \vec{u}) = 0
$$

$$
B(\vec{u}, \vec{u}) > 0.
$$

So, take an $n-1$ dimensional subspace X of V. By induction, X has an orthonormal basis $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_{n-1}$.

Let \vec{v} be any vector not in X. Put $\vec{u} = \vec{v} - p_X(\vec{v})$. Then \vec{u} is orthogonal to X and (since $\vec{v} \notin X$), \vec{u} is not 0. This means that we have

$$
B(\vec{u}_1, \vec{u}) = B(\vec{u}_2, \vec{u}) = \dots = B(\vec{u}_{n-1}, \vec{u}) = 0
$$

$$
B(\vec{u}, \vec{u}) > 0.
$$

Rescaling \vec{u} by $\sqrt{B(\vec{u}, \vec{u})}$, we get an orthonormal basis for X. \Box

So, take an $n-1$ dimensional subspace X of V. By induction, X has an orthonormal basis $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_{n-1}$.

Let \vec{v} be any vector not in X. Put $\vec{u} = \vec{v} - p_X(\vec{v})$. Then \vec{u} is orthogonal to X and (since $\vec{v} \notin X$), \vec{u} is not 0. This means that we have

$$
B(\vec{u}_1, \vec{u}) = B(\vec{u}_2, \vec{u}) = \dots = B(\vec{u}_{n-1}, \vec{u}) = 0
$$

$$
B(\vec{u}, \vec{u}) > 0.
$$

Rescaling \vec{u} by $\sqrt{B(\vec{u}, \vec{u})}$, we get an orthonormal basis for X. \Box