
Inner products



Let V be a vector space over a field F . Recall that a bilinear form

is a function B which takes as input two vectors ~v and ~w and is

linear in each input, meaning

B(~v1 + ~v2, ~w) = B(~v1, ~w) + B(~v2, ~w)

B(~v, ~w1 + ~w2) = B(~v, ~w1) + B(~v, ~w2)

B(c~v, ~w) = B(~v, c~w) = cB(~v, ~w).
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We now switch to the field being the real numbers. In this case, we

can define a special kind of symmetric bilinear form: A symmetric

bilinear form is called positive definite if, for all nonzero vectors

~v, we ave B(~v,~v) > 0.

A positive definite symmetric bilinear form is called an inner

product . We’ll often denote an inner product as (~v|~w), 〈~v, ~w〉 or

~v · ~w.
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There is a variant for complex numbers coming soon.



Let V be a vector space with an inner product B( , ).

For a vector ~v in B, we put |~v| =
√
B(~v,~v).

For two nonzero vectors ~x and ~y, we define the angle between ~x

and ~y to be cos−1 B(~x,~y)
|~x| |~y| .



For two nonzero vectors ~v and ~y, we define the angle between ~x and

~y to be cos−1 B(~x,~y)
|~x| |~y| .

To see that this is defined, we want to prove the

Cauchy-Schwartz inequality : For any vectors ~x and ~y, we have

|B(~x, ~y)| ≤ |~x| |~y|. Moreover, we have equality if and only if ~x and

~y are parallel.



For two nonzero vectors ~v and ~y, we define the angle between ~x and

~y to be cos−1 B(~x,~y)
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To see that this is defined, we want to prove the

Cauchy-Schwartz inequality : For any vectors ~x and ~y, we have

|B(~x, ~y)| ≤ |~x| |~y|. Moreover, we have equality if and only if ~x and

~y are parallel.

Proof: For simplicity, assume that ~x and ~y are nonzero. Put

p = |~x|, q = |~y| and put ~u = ~x
p and ~v = ~y

q , so ~x = p~u and ~y = q~v

with |~u| = |~v| = 1.

Then B(~u± ~v, ~u± ~v) = B(~u, ~u)± 2B(~u,~v) + B(~v,~v) ≥ 0. We have

B(~u, ~u) = B(~v,~v) = 1, so this gives 2± 2B(~u,~v) ≥ 0. So

|B(~u,~v)| ≤ 1 as desired. Moreover, we have equality if and only if

~u = ∓~v. �



For two nonzero vectors ~v and ~y, we define the angle between ~x and

~y to be cos−1 B(~x,~y)
|~x| |~y| .

Thus, ∠(~x, ~y) is acute if B(~x, ~y) > 0, is obtuse if B(~x, ~y) < 0 and

is a right angle if B(~x, ~y) = 0.

We say that ~x and ~y are perpendicular or orthogonal if

B(~x, ~y) = 0. We say that two subspaces X and Y of V are

perpendicular or orthogonal if B(~x, ~y) = 0 for all ~x ∈ X and

~y ∈ Y .



We say that two subspaces X and Y of V are perpendicular or

orthogonal if B(~x, ~y) = 0 for all ~x ∈ X and ~y ∈ Y .

Problem Check that, if X and Y are orthogonal, then

X ∩ Y = {~0}.



We say that two subspaces X and Y of V are perpendicular or

orthogonal if B(~x, ~y) = 0 for all ~x ∈ X and ~y ∈ Y .

Problem Check that, if X and Y are orthogonal, then

X ∩ Y = {~0}.

This suggests that we will often have orthogonal direct sums.

Recall that, when we have a direct sum V = X ⊕ Y , we get linear

maps pX : V → X and pY : V → Y such that v = pX(v) + pX(v).

Problem If V = X ⊕X⊥, show that pX(v) is the closest point to v

in X.



In order to compute and discuss orthogonal projections, we

introduce the notion of orthonormal bases. A list of vector ~u1,

~u2, . . . , is called orthonormal if

B(~ui, ~uj) =

1 i = j

0 i 6= j
.



Here are the main results about orthonormal vectors:

• If ~u1, ~u2, . . . , are orthonormal, then they are linearly

independent.

• If ~u1, ~u2, . . . , ~un is an orthonormal basis of X ⊂ V , then pX is

given by the formula

pX(~v) =
n∑

i=1

B(~ui, ~v)~ui.

• In the above case, X⊥ = Ker pX , and V = X ⊕X⊥.

• A finite dimensional vector space, with an inner product,

always has an orthonormal basis.

We’ll head to Miro to prove the first three . . .



Finally, let us show that any finite dimensional vector space V ,

with an inner product B, has an orthonormal basis. Our proof is

by induction on dimV ; the base case dimV = 0 is trivial.
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