Inner products




Let V be a vector space over a field F'. Recall that a bilinear form
is a function B which takes as input two vectors v and w and is

linear in each input, meaning

B(v1 + V2, w) = B(v1, W) + B(t2, W)

B(V,w 4+ wsy) = B(¥,w1) + B(U, W)
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is a function B which takes as input two vectors v and w and is

linear in each input, meaning
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The bilinear form B is called symmetric if B(v,w) = B(wW, V).




We now switch to the field being the real numbers. In this case, we
can define a special kind of symmetric bilinear form: A symmetric
bilinear form is called positive definite if, for all nonzero vectors

v, we ave B(U,v) > 0.

A positive definite symmetric bilinear form is called an tnner

product. We'll often denote an inner product as (v|w), (¥, W) or

— =

UV -w.




We now switch to the field being the real numbers. In this case, we
can define a special kind of symmetric bilinear form: A symmetric
bilinear form is called positive definite if, for all nonzero vectors
v, we have B(U,v) > 0.

A positive definite symmetric bilinear form is called an tnner
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There is a variant for complex numbers coming soon.




Let V' be a vector space with an inner product B( , ).

For a vector ¥ in B, we put |v] = /B(¥, 7).

For two nonzero vectors ¥ and y, we define the angle between &

and % to be cos™! B(z.4)




For two nonzero vectors v and 1/, we define the angle between ¥ and
1 B(Z,9)
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To see that this is defined, we want to prove the

Cauchy-Schwartz inequality: For any vectors X and y, we have

|B(Z, )| < |Z] |y]. Moreover, we have equality if and only if £ and

y are parallel.
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To see that this is defined, we want to prove the
Cauchy-Schwartz inequality: For any vectors X and y, we have
|B(Z, )| < |Z] |y]. Moreover, we have equality if and only if £ and

y are parallel.

Proof: For simplicity, assume that £ and 4 are nonzero. Put

—
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with |u| = |[J] = 1.




For two nonzero vectors v and 1/, we define the angle between ¥ and
1 B(Z,9)

EREik
Thus, Z(Z,%) is acute if B(Z,1y) > 0, is obtuse if B(Z,y) < 0 and
is a right angle if B(Z,y) = 0.

y to be cos™

We say that ¥ and y are perpendicular or orthogonal if
B(Z, ) = 0. We say that two subspaces X and Y of V are
perpendicular or orthogonal if B(Z,y) =0 for all ¥ € X and
yevY.




We say that two subspaces X and Y of V' are perpendicular or
orthogonal if B(Z,ij) =0 forall ¥ € X and y €Y.

Problem Check that, if X and Y are orthogonal, then
XnY ={0}.




We say that two subspaces X and Y of V are perpendicular or
orthogonal if B(Z,ij) =0 forall ¥ € X and y €Y.

Problem Check that, if X and Y are orthogonal, then
XnY ={0}.

This suggests that we will often have orthogonal direct sums.
Recall that, when we have a direct sum V = X &Y, we get linear
maps px : V — X and py : V — Y such that v = px(v) + px (v).

Problem If V = X @ X, show that px(v) is the closest point to v
in X.




In order to compute and discuss orthogonal projections, we
introduce the notion of orthonormal bases. A list of vector uq,

Us, ..., 1s called orthonormal if

B(u;, ;) =

0




Here are the main results about orthonormal vectors:

o If uy, tio, ..., are orthonormal, then they are linearly
independent.

o If w1, us, ..., u, is an orthonormal basis of X C V', then px is
given by the formula

px () =Y B(ii;, 6)i;.
=1

e In the above case, X+ =Ker px,and V =X ¢ X .

e A finite dimensional vector space, with an inner product,

always has an orthonormal basis.

We’ll head to Miro to prove the first three ...




Finally, let us show that any finite dimensional vector space V,

with an inner product B, has an orthonormal basis. Our proof is
by induction on dim V'; the base case dim V' = 0 is trivial.




Finally, let us show that any finite dimensional vector space V,

with an inner product B, has an orthonormal basis. Our proof is
by induction on dim V'; the base case dim V' = 0 is trivial.

So, take an n — 1 dimensional subspace X of V. By induction, X

has an orthonormal basis w1, U, ..., Up—_1.




Finally, let us show that any finite dimensional vector space V,
with an inner product B, has an orthonormal basis. Our proof is

by induction on dim V'; the base case dim V' = 0 is trivial.

So, take an n — 1 dimensional subspace X of V. By induction, X

has an orthonormal basis w1, U, ..., Up—_1.

Let ¢ be any vector not in X. Put ¥ = v — px(¥). Then 4 is
orthogonal to X and (since ¥ ¢ X), « is not 0. This means that we
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