Question 1 (15 points)

We give a matrix M and its row reduction:

$$
M = \begin{bmatrix} -1 & -2 & 2 & 5 & -1 \\ 2 & 4 & 0 & 2 & -1 \\ -1 & -2 & 2 & 5 & -2 \end{bmatrix} \quad \text{rref}(M) = \begin{bmatrix} 1 & 2 & 0 & 1 & 3 \\ 0 & 0 & 1 & 3 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.
$$

(a) (2 points) What is the rank of M?

There are two pivot columns, so the rank is 2.

- (b) (2 points) What is the dimension of the image of M? Explain how you know. The dimension of the image is the same as the rank, so dim Image(M) = 2.
- (c) (3 points) What is the dimension of the kernel of M? Explain how you know. By the rank-nullity theorem, the dimension of the kernel is the number of columns minus the rank, so dim $Ker(M) = 5 - 2 = 3$.
- (d) (4 points) Is $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ in the image of M ? Explain why or why not. No, it is not. One can see this systematically by row-reducing the matrix formed by adding the column $\left[\begin{smallmatrix} 1 \ 0 \ 0 \end{smallmatrix}\right]$ to M. A quicker route is to notice that every vector $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ in Image(M) has $x_1 = x_3$.
- (e) (4 points) Is $\begin{bmatrix} 1 \\ 2 \\ 0 \\ 1 \\ 3 \end{bmatrix}$ 1 in the kernel of M ? Explain why or why not.

No, it is not. It is easier to check this using the row reduction of M , which has the same kernel. We compute

$$
\text{rref}(M) \begin{bmatrix} 1 \\ 2 \\ 0 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 0 & 1 & 3 \\ 0 & 0 & 1 & 3 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 0 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 15 \\ 14 \\ 0 \end{bmatrix} \neq \vec{0}.
$$

Question 2 (19 points)

A quadratic polynomial (in two variables) is a polynomial $q(x, y)$ of the form $a+bx+cy+dx^2+exy+fy^2$ for some real scalars a, b, c, d, e, f . Let V be the vector space of those quadratic polynomials which have $q(1, 1) = q(1, -1) = q(-1, 1) = q(-1, -1) = 0.$

(a) (9 points) Find a basis for V .

The condition $q(1, 1) = q(1, -1) = q(-1, 1) = q(-1, -1) = 0$ unpacks to four linear equations:

 $a+b+c+d+e+f = 0$ $a-b+c+d-e+f = 0$ $a+b-c+d-e+f = 0$ $a-b-c+d+e+f = 0$

Subtracting the first rows from the others gives

 $a+b+c+d+e+f = 0$ $-2b$ $-2e$ = 0 $-2c$ $-2e$ = 0 $-2b-2c$ =

We could keep row reducing at this point, but it is easier to directly notice that the bottom three equations give $b = -e = c = -b$, so $b = -b$ and we deduce that $b = c = e = 0$. Thus, our equations simplify to

$$
a + d + f = 0
$$
 $b = c = e = 0.$

A basis of solutions is $(a, b, c, d, e, f) = (1, 0, 0, -1, 0, 0)$ and $(1, 0, 0, 0, 0, -1)$. The corresponding polynomials are $1 - x^2$ and $1 - y^2$.

(b) (5 points) Express the quadratics $x^2 - y^2$, $x^2 + y^2 - 2$ and $x^2 - 1$ in your basis. We have

$$
x2 - y2 = -(1 - x2) + (1 - y2)
$$

\n
$$
x2 + y2 - 2 = -(1 - x2) - (1 - y2)
$$

\n
$$
x2 - 1 = -(1 - x2)
$$

Of course, the answer to this part will depend on the answer to the previous part.

(c) (5 points) Are the three quadratics $x^2 - y^2$, $x^2 + y^2 - 2$ and $x^2 - 1$ linearly independent, or linearly dependent? Justify your answer.

They are linearly dependent. The vector space of solutions has dimension 2, so any three vectors must be linearly dependent.

Question 3 (10 points)

- Let $\vec{u} = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$, and let L be the plane $\text{Span}(\vec{u}, \vec{v})$ in \mathbb{R}^3 .
- (a) (4 points) The vector $\begin{bmatrix} 1 \\ 0 \\ -4 \end{bmatrix}$ $\Big]$ is in L. Write $\Big[\,\frac{1}{0}\Big]$ in the coordinates of the basis (\vec{u}, \vec{v}) . We have

$$
\begin{bmatrix} 1 \\ 0 \\ -4 \end{bmatrix} = \vec{u} - 2\vec{v}
$$

so the answer is $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$.

(b) (6 points) Let $A : \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation $A \begin{bmatrix} x \\ y \end{bmatrix}$ $\Big] = \begin{bmatrix} y \\ z \\ -8x \end{bmatrix}$; the transformation A takes L to L. Write the restriction of A to L in the basis (\vec{u}, \vec{v}) of L. We have

$$
A\vec{u} = \begin{bmatrix} 2 \\ 0 \\ -8 \end{bmatrix} = 2\vec{u} - 4\vec{v}
$$

$$
A\vec{v} = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} = \vec{u}
$$

so the answer is $\begin{bmatrix} 2 & 1 \\ -4 & 0 \end{bmatrix}$.

Question 4 (16 points)

Let V be a vector space and let $A: V \to V$ be a linear map. Please prove or provide a counterexample to the following claims:

- (a) (4 points) If $B: V \to V$ is invertible, then $\text{Ker}(BA) = \text{Ker}(A)$. This is true. If $A\vec{v} = \vec{0}$ then $BA\vec{v} = B\vec{0} = \vec{0}$. Conversely, if $BA\vec{v} = \vec{0}$ then $A\vec{v} = B^{-1}BA\vec{v} = B^{-1}BA\vec{v}$ $B^{-1}\vec{0} = \vec{0}.$
- (b) (4 points) If $B: V \to V$ is invertible, then $\text{Ker}(AB) = \Im(A)$. This is false. A counter-example is to take $B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ and $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$. Then $AB = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$. So $\text{Ker}(A) = \begin{bmatrix} 0 \\ * \end{bmatrix}$ and $\text{Ker}(AB) = \begin{bmatrix} * \\ 0 \end{bmatrix}$.
- (c) (4 points) If A^2 is invertible, then A is invertible. This is true. If $SA^2 = \text{Id}$ then $(SA)A = \text{Id}$, so SA is the inverse to A. Since the matrices are square, we only need to check one of the two identities $(SA)A = Id$ and $A(SA) = Id$.
- (d) (4 points) If $A^2 = 0$, then $A = 0$. This is false. A counter-example is $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$.

Question 5 (10 points)

Let V be a finite dimensional vector space with basis $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$. Let $\vec{w} = c_1\vec{v}_1 + c_2\vec{v}_2 + \cdots + c_n\vec{v}_n$ be another vector in V. Prove that $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_{n-1}, \vec{w}$ is a basis of V if and only if $c_n \neq 0$.

First, suppose that $c_n = 0$. Then

$$
\vec{w} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \cdots + c_{n-1} \vec{v}_{n-1}.
$$

So $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_{n-1}, \vec{w}$ are linearly dependent and are not a basis.

Now, suppose that $c_n \neq 0$. We will show that $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_{n-1}, \vec{w}$ are linearly independent, and span V. We could also check just one of these, and then note that this is a list of n elements and dim $V = n$.

Proof of linear independence: Suppose that $a_1\vec{v}_1 + \cdots + a_{n-1}\vec{v}_{n-1} + b\vec{w} = \vec{0}$. We rewrite this as

$$
a_1\vec{v}_1 + \dots + a_{n-1}\vec{v}_{n-1} + b(c_1\vec{v}_1 + c_2\vec{v}_2 + \dots + c_n\vec{v}_n) = \vec{0}.
$$

$$
(a_1 + bc_1)\vec{v}_1 + (a_2 + bc_2)\vec{v}_2 + \cdots + (a_{n-1} + bc_{n-1})\vec{v}_{n-1} + bc_n\vec{v}_n = \vec{0}.
$$

Using the linear independence of the \vec{v}_i , we have

$$
a_1 + bc_1 = a_2 + bc_2 = \dots = a_{n-1} + bc_{n-1} = bc_n = 0.
$$

Since $c_n \neq 0$, we deduce that $b = 0$ and thus $a_1 = a_2 = \cdots = a_{n-1} = 0$. Proof of spanning: We have

$$
\vec{v}_n = \frac{1}{c_n} \left(\vec{w} - c_1 \vec{v}_1 - c_2 \vec{v}_2 - \dots - c_{n-1} \vec{v}_{n-1} \right).
$$

So \vec{v}_n is in $\text{Span}(\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_{n-1}, \vec{w})$. Since $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$ span V, this shows that $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_{n-1}, \vec{w}$ spans V as well.

Question 6 (10 points)

Let V be a finite dimensional vector space and let A and B be subspaces. Show that, if $\dim A + \dim B$ $\dim V$, then $A \cap B$ contains a nonzero vector.

Here is one approach. Let $\alpha_1, \alpha_2, \ldots, \alpha_a$ be a basis of A and let $\beta_1, \beta_2, \ldots, \beta_b$ be a basis of B. Since $a + b > \dim V$, there is a linear relation:

 $c_1\alpha_1 + \cdots + c_a\alpha_a + d_1\beta_1 + \cdots + d_b\beta_b = \vec{0}$

whose coefficients are not all 0. So

 $c_1\alpha_1 + \cdots + c_a\alpha_a = -d_1\beta_1 - \cdots - d_b\beta_b.$

The sum $c_1\alpha_1 + \cdots + c_a\alpha_a$ is clearly in A, and the sum $-d_1\beta_1 - \cdots - d_b\beta_b$ is clearly in B, so this is a vector in $A \cap B$. Using the linear independence of $\alpha_1, \alpha_2, \ldots, \alpha_a$, and of $\alpha_1, \alpha_2, \ldots, \alpha_a$, it is not zero.

Question 7 (20 points)

Let \mathbb{R}^∞ be the vector space of infinite sequences (a_1, a_2, a_3, \ldots) of real numbers. Let $S : \mathbb{R}^\infty \to \mathbb{R}^\infty$ be the linear transformation

 $S((a_1, a_2, a_3, \ldots)) = (a_2, a_3, a_4, \ldots).$

- (a) (4 points) What is the image of S ? Every vector is in the image of S, since (a_2, a_3, a_4, \ldots) is $S((0, a_2, a_3, \ldots)).$
- (b) (4 points) What is the kernel of S ? The kernel of S is vectors of the form $(a, 0, 0, 0, \ldots)$.
- (c) (6 points) Is there a linear transformation T such that $ST = Id$? Explain why or why not. Yes. One such choice is $T((a_1, a_2, \ldots)) = (0, a_1, a_2, \ldots).$
- (d) (6 points) Is there a linear transformation T such that $TS = Id$? No. We have $S((1,0,0,0,\ldots)) = S((0,0,0,0,\ldots)) = (0,0,0,\ldots)$ so, if there were such a T, we would have both $T((0,0,0,0,\ldots)) = (0,0,0,\ldots)$ and $T((0,0,0,0,\ldots)) = (1,0,0,\ldots)$, a contradiction.