Question 1
Let

B =

[SENVIAS]
S =+

r
u
xT

and suppose det B = 17. Compute the following quantities, and show how you did so:

2p 2q 2r
(a) det [2s 2t 2u].
20 2w 2z

Factoring out a 2 from each row (or each column), we have

2p 2q 2r p q
det [2s 2t 2u| =2%det |s t wu| =2%x17=136.
2v 2w 2x vow T
s t u
(b) det [v w z|.
p q T
We perform row swaps to return to the original matrix:
s Tt wu s t u p q r
det |v w x| =—det|p q 7| =det|s t wu| =1T7.
p q T vow T vow X
[ q ro ]
(c) det |2p+3s 2¢+3t 2r+3u|.
|4p +5v 4g+ 5w  4r + 5z
We perform row operations to give:
[ p q ro ] p g T p g
det |2p+3s 2¢+3t 2r+3u| =det [3s 3t 3u| =3xbxdet [s t wu| =3x5x17 = 255.
14p +5v  4g+d5w 4r + 5z 50 dw Hx vow T

Question 2 )
Let V be the vector space of functions of the form f(x)e=* /2 where f is a polynomial of degree < n.

For f € V, put D(f) = % — 22 f.
(a) Show that D maps V to V.
For any polynomial f(x), we have

D (f@)e™"/?) = s (f@)e™"12) — a2 fla)e"/2
= & (F@e 2 —af@)e™ ) — a2 f ()2
= (/@2 — f @)e 2 = f@)e 2~ af(@)e 2 42t fla)e ) —a? f(a)e
= (= ") =22 (@) — fla) ) e
If f has degree < n, then f” has degree < n — 2, 2zf’(x) has degree < n and f has degree < n, so

—f"(z) = 2z f'(x) — f(x) has degree < n.
Note that it is very important that the 22 f(x) terms cancelled; otherwise, this wouldn’t be true.



(b) Compute the eigenvalues of D acting on V.

Using the above formula, we see that D(w”e‘”‘z/2)
, ..., 2%, the matrix of D is

in the basis =", ©

n—1

= (—n(n —1)a" "2 — (2n+ 1)a") e=**/2 Thus,

[—(2n+ 1)
0 —(2n—1)
—n(n—1) 0 —(2n —3)
—(n—1)(n—-2) 0 —(2n —5)
—(n—2)(n—23) 0 —(2n—17)

i 22-1) 0 —1]
(All blank entries are 0.) So the matrix is lower triangular with diagonal entries —(2n+1), (—2n—1),
—(2n —3), ..., —1, and the eigenvalues are —(2n + 1), (—2n — 1), —(2n—3), ..., —1.

Question 3
Let
1 0 6

A=10 1 2

-1 2 -1

The characteristic polynomial of A is (z — 1)(z? + 1).
(a) Find a real eigenvector of A.

Since the characteristic polynomial is (z — 1)(z? + 1), we know that the only real eigenvalue is 1.
We compute the kernel of A — Ids:

Ker(A - 1dg) = Ker [ 8§ 5 | =R[7].

(b) Find a two dimensional subspace L of R? such that A maps L to L.
Guided by the degree two factor of the characteristic polynomial, we compute Ker(A? + Id3).

Ker(A? 4 1d3) = Ker [:03 182§} =R {z} +R {Eﬂ .

Question 4
Let A be a real square k x k matrix which is diagonalizable with eigenvalues 2 and 3. Let ¥ be a
k-dimensional real vector. Show that the sequence of vectors ¥, Av, A%G, A3, ...obeys

A2 = 5A™ TG — 6 A"

for all positive integers n.

Since A is diagonalizable with eigenvalues 2 and 3, we have (A — 2Id)(A — 3Id) = 0 or, in other words,
A? —5A +1d = 0. Multiplying by A" and rearranging, we have A"+2? = 54"+ — 6A" so A"29 =
5ATLE — 6A"T.

Question 5
Let V be a two dimensional vector space over the field of rational numbers. Note that our field is
the rational numbers, not the reals. Let T : V — V be a linear transformation obeying T2 = 2Id.
Let ¥ € V' be a nonzero vector.

(a) Prove that ¢ and T'0 are linearly independent.

Suppose, to the contrary, that 7% = cv. Then T%7 = ¢*¢. But also T2% = 2, so ¢ = 2. But 2 has
no rational square root, a contradiction.
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(b) Write the linear operator T in the basis ¥, T'0.

We have T% = T'¥ and T(T%) = T2¢ = 24, so the matrix is [(1J g}

Question 6
Let A be a 3 x 3 real matrix with eigenvalues 1, 2 and 3. Let L be the set of 3 x 3 matrices B which
obey the condition AB = BA.

(a)

()

Show that L is 3-dimensional.
We work in a basis where A is diagonal, so

A= {1 2 } .
3
We write out the condition AB = BA:

1 Bi1 Biz Bis Bi1 Biz Bis
AB = |: 2 } |:321 Bao 323} = |:2321 2B22 2323:|
3 Bs1 B3z Bss 3B31 3B32 3Bss
Bi1 Biz B Bi1 2B12 3B
A= B Es| '] - |BaEE |
Bs1 B3z Bss 3 Bs1 2B32 3Bss
Equating the two sides, for ¢ # j, we have iB;; = jB;; so B;; = 0. Thus, A and B commute if and
only if B is diagonal (in the same basis where A is diagonal).
Show that a basis of L is Id, A, A2.
(There are several ways to solve this question; this is the most conceptual.) First, we check that
these matrices are in L. Indeed, AId = A =1dA, AA = A? = AA and AA? = A3 = A%A.
We have already checked that L is three dimensional, so it remains to show that Id, A and A? are
linearly independent. Suppose, instead, that we had a linear relation ¢y A% 4+c; A+cold = 0. Then A
is a zero of the polynomial caz? + 12+ . But the minimal polynomial of A is (z —1)(z —2)(x —3),
so A is not a zero of any polynomial of degree < 2.
Express A% as a linear combination of Id, A and A2, and prove your answer is correct.
The easiest way to do this is to use the minimal polynomial: We have (A—1Id)(A—2Id)(A—31d) = 0,
or A3 —6A4%2 4 11A —6Id =0, so A% =642 — 11A + 61d.

Question 7
Let V be a finite dimensional vector space and let VV* be the dual vector space. Let «, 8 and v be three
elements of V*.

(a)

Show that «, 5 and ~ are linearly independent if and only if there are vectors 4, ¥/, @ in V' obeying
the equations:

a(@) = 1 a@) = 0 a@) = 0
@) = 0 B = 1 A = 0
W@) = 0 (@) = 0 @) = 1

—

First suppose that such vectors u, v, @ exist and suppose, for the sake of contradiction, that we
have aa+bS 4+ ¢y = 0. Then 0 = (aac+ bf + ) (@) = aa(@) + bB(&) + cy(@) =a-1+b-04+c-0=a
and similarly 0 =6 and 0 = c.

In the reverse order, suppose that «, 8 and v are linearly independent. Complete «, 3, v to a basis
a, B, 7, 04, 05, ..., 0y of V*. Let 4, U, W, ey, €5, ..., e, be the dual basis of V.

Recall that a A B A 7y is defined to be the multilinear form

(@A BAN)(E, 7, 2) = a(D)B(G)(Z) = Z)B(Z)V(Y) — a(§)B(Z)y(2)
+a(§)BEN(T) + (2)BE)V(Y) — a(2) ()7 (D).

Show that «, 8 and  are linearly independent if and only if a A B A~ #£ 0.
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First, suppose that «, 8 and y are linearly independent and take u, ¥ and w as above. Then
(aANBAY)(E,0,0)=1-1-1404+04+0+0+0=1.

SoaABAYy#£O0.

Conversely, suppose that one of , 3, -y is in the span of the other two: Say, without loss of generality,
that v = aa + bB. Then

aNBAy=aABA(ax+bB)=alaNBAa)+blanBAB)
=—alaNaAB)+blanBAB)=—al0AB)+blan0)=0.

Question 8

Let U and V' be n x n invertible matrices which obey UV = —VU. Show that, if A is an eigenvalue of
U, then —\ is also an eigenvalue of U.

We rewrite UV = —VU as U = —VUV~!. So U and —U are similar and have the same eigenvalues. If
A is an eigenvalue of U, then —\ is an eigenvalue of —U so, by the similarity, we deduce that —\ is an
eigenvalue of U as well.
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