Problem Set One: Due Thursday, January 13 at 11:59 PM

See course website for homework policies.

Reading Read Chapter 1 looking for material you haven't seen before. The field material can be skimmed for now. Then fill out the poll at https://forms.gle/jxiLMBnrKijx9nJK8.

Problem 1. We list some basic nutritional information:

- One cup of flour contains 80 grams of carbohydrate, 16 grams of protein and no fat.
- One egg contains no carbohydrate, 6 grams of protein and 5 grams of fat.
- One tablespoon of butter contains no carbohydrate or protein and 11 grams of fat.
- One cup of sugar contains 192 grams of carbohydrate and no protein or fat.

Compute the matrix R such that:

$$R \begin{bmatrix} \text{Flour} \\ \text{Eggs} \\ \text{Butter} \\ \text{Sugar} \end{bmatrix} = \begin{bmatrix} \text{Carbohydrate} \\ \text{Protein} \\ \text{Fat} \end{bmatrix}.$$

Problem 2. The picture below depicts a cubic polynomial $f(x) = ax^3 + bx^2 + cx + d$ with f(0) = 0, f'(0) = 2, f(1) = 1 and f'(1) = 2. Find the coefficients of f(x).

Problem 3. Let A be an $\ell \times m$ matrix and let B be an $m \times n$ matrix.

- (1) Prove or disprove: If $Ker(A) = \{\vec{0}\}$ and $Ker(B) = \{\vec{0}\}$ then $Ker(AB) = \{\vec{0}\}$.
- (2) Prove or disprove: If $Ker(AB) = \{\vec{0}\}\$ then $Ker(A) = \{\vec{0}\}\$ and $Ker(B) = \{\vec{0}\}\$.
- (3) Prove or disprove: If $\operatorname{Im}(A) = \mathbb{R}^{\ell}$ and $\operatorname{Im}(B) = \mathbb{R}^{m}$ then $\operatorname{Im}(AB) = \mathbb{R}^{\ell}$.
- (4) Prove or disprove: If $\operatorname{Im}(AB) = \mathbb{R}^{\ell}$ then $\operatorname{Im}(A) = \mathbb{R}^{\ell}$ and $\operatorname{Im}(B) = \mathbb{R}^{m}$.

Problem 4. Let A be an $m \times n$ matrix and let V be an $n \times n$ invertible matrix.

- (1) Prove that Im(AV) = Im(A).
- (2) Prove that $\operatorname{Ker}(AV) = V^{-1}\operatorname{Ker}(A)$. To spell this out more explicitly, show that $\operatorname{Ker}(AV)$ is $\{V^{-1}\vec{x}:\vec{x} \text{ in } \operatorname{Ker}(A)\}$.

Problem 5. (Challenge) We described three row operations that we can perform on a matrix:

- (R1) Adding a multiple of row i to row j.
- (R2) Switching rows i and j.
- (R3) Multiplying row i by a nonzero scalar c.

This problem investigates what we can do using by just doing (R1) many times.

- (1) Let \vec{x} and \vec{y} be two rows of A. Show that, by using (R1) three times, we can change these rows into $-\vec{y}$ and \vec{x} .
- (2) Let \vec{x} and \vec{y} be two rows of A and let c be a nonzero scalar. Show that, by using (R1) four times, we can change these rows into $c\vec{x}$ and $c^{-1}\vec{y}$.