PROBLEM SET ELEVEN: DUE TEUSDAY, APRIL 19 AT 11:59 PM

See course website for homework policies. This is the final problem set!

Reading Read 8.5.

Textbook problems Please solve 8.5.1, 8.5.3, 8.5.6, 8.5.9, 8.5.10, 8.5.11

Problem 1. Let V be the vector space of smooth (meaning infinitely differentiable) functions $[0, 2\pi] \to \mathbb{R}$ which obey $f(0) = f(2\pi)$ and $f'(0) = f'(2\pi)$. Define an inner product on V by

$$\langle f(x), g(x) \rangle = \int_0^{2\pi} f(x)g(x)dx.$$

Define the linear operator $L: V \to V$ by $L(f) = \frac{d^2}{(dx)^2} f$. Show that L is selfadjoint, meaning that $\langle L(f), g \rangle = \langle f, L(g) \rangle$.

Problem 2. Let A be a linear operator $\mathbb{R}^n \to \mathbb{R}^n$. In this problem, we will show that A has a singular value decomposition, meaning that we can find two orthonormal bases $(\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_n)$ and $(\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n)$ for \mathbb{R}^n such that $A\vec{u}_i$ is a scalar multiple of \vec{v}_i for each $1 \le i \le n$.

- (1) Consider the function $|A\vec{x}|$ on the unit sphere $\{\vec{x}|\langle\vec{x},\vec{x}\rangle = 1\}$. Let \vec{u} be the vector on the unit sphere where $|A\vec{u}|$ is maximized. (You may assume such a vector exists, if you don't have the analysis background to know that a continuous function on a compact set always has a maximum.) Define $\vec{v} = A\vec{u}$. Show that A takes \vec{u}^{\perp} to \vec{v}^{\perp} .
- (2) Show (induct on *n*) there there is a pair of orthonormal bases $(\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_n)$ and $(\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n)$ for \mathbb{R}^n such that $A\vec{u}_i$ is a scalar multiple of \vec{v}_i for each $1 \leq i \leq n$.