PROBLEM SET TWO: DUE THURSDAY, JANUARY 20 AT 11:59 PM

See course website for homework policies.

Reading Read 1.1 and 2.1-2.3. Then fill out the poll at https://forms.gle/GQnxU7gxfCvk7QFWA

Problem 1. Find linear polynomials at + b and ct + d such that

$$(at+b)(t^{2}+1) + (ct+d)(t^{2}+t+1) = 1.$$

Problem 2. Find a nonzero vector which is both in Image $\begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix}$ and in Image $\begin{bmatrix} 1 & 0 \\ -1 & 1 \\ 0 & -1 \end{bmatrix}$.

Problem 3. Let F be a field (see Section 1.1) in your textbook. Prove the following from the axioms of a field; you may also use the results that 0x = x0 = 0 and (-1)x = x(-1) = -x.

- (1) For any x in F, we have $x^2 1 = (x + 1)(x 1)$.
- (2) For any elements x and y in F, if xy = 0 then either x = 0 or y = 0.
- (3) For any x in F, if $x^2 = 1$ then x = 1 or x = -1.

Problem 4. Let A be an $\ell \times m$ matrix and let B be an $m \times n$ matrix.

- (1) Suppose that $\operatorname{Ker}(AB) = 0$ and $\operatorname{Image}(B) = \mathbb{R}^m$. Show that $\operatorname{Ker}(A) = \{\vec{0}\}$.
- (2) Suppose that $\text{Image}(AB) = \mathbb{R}^{\ell}$ and $\text{Ker}(A) = \{\vec{0}\}$. Show that $\text{Image}(B) = \mathbb{R}^{m}$.

Problem 5. Let X be a set and let F be a field. Let F^X be the vector space of all functions $f: X \to F$. (See Example 3 in Section 2.1 of your textbook.) Let F_{finite}^X be the set of functions $f: X \to F$ such that $\{x \in X : f(x) \neq 0\}$ is finite. Show that F_{finite}^X is a subspace of F^X .

Problem 6. Let T be the set of functions $\mathbb{R} \to \mathbb{R}$ which are of the form $a \cos t + b \sin t$. For x + iy in \mathbb{C} and f(t) in T, define $(x + iy) * f(t) = xf(t) + y\frac{df}{dt}$. Show that T is a \mathbb{C} -vector space with respect to this scalar multiplication, and the usual addition.