PROBLEM SET FOUR: DUE THURSDAY, FEBRUARY 3 AT 11:59 PM See course website for homework policies.

Reading Read 3.1-3.4 Then fill out the poll at https://forms.gle/NZByXgpwJFyEoHW87. **Textbook problems** Please solve problems 2.4.1, 2.4.3, 2.4.5, 2.4.6, 2.6.3, and 2.6.6.

Problem 1. Let $X = \{ \begin{bmatrix} x \\ y \\ x+y \end{bmatrix} : x, y \in \mathbb{R} \}$ and let $Y = \{ \begin{bmatrix} 0 \\ 0 \\ z \end{bmatrix} : z \in \mathbb{R} \}$. Show that $\mathbb{R}^3 = X \oplus Y$.

Problem 2. Consider the following subspaces of $\mathbb{R}[x]$:

$$C = \{\text{constant polynomials}\}$$

$$L = \{\text{polynomials of degree} \le 1\}$$

$$P = \{f(x) : f(0) = 0\}$$

$$Q = \{f(x) : f(0) = 0 \text{ and } f(1) = 0\}$$

Prove or disprove each of the following statements:

(1) $\mathbb{R}[x] = C \oplus P.$ (2) $\mathbb{R}[x] = C \oplus Q.$ (3) $\mathbb{R}[x] = L \oplus P.$ (4) $\mathbb{R}[x] = L \oplus Q.$

Problem 3. Let V be a finite dimensional vector space and let $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$ be a set of linearly independent vectors in V. Show that there exist vectors $\vec{v}_{k+1}, \ldots, \vec{v}_n$ in V such that $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k, \vec{v}_{k+1}, \ldots, \vec{v}_n$ is a basis of V.

Problem 4. Let V be a finite dimensional vector space and let $T : V \to V$ be a linear transformation. Define $I_j = \text{Image}(T^j)$ and $K_j = \text{Ker}(T^j)$.

- (1) Show that $I_1 \supseteq I_2 \supseteq I_3 \supseteq \cdots$ and $K_1 \subseteq K_2 \subseteq K_3 \subseteq \cdots$.
- (2) Show that there is some integer N for which $I_N = I_{N+1} = I_{N+2} = \cdots$ and $K_N = K_{N+1} = K_{N+2} = \cdots$.
- (3) Show that T maps I_N to I_N and the map $T: I_N \to I_N$ is invertible.
- (4) Show that $V = I_N \oplus K_N$.