PROBLEM SET FIVE: DUE THURSDAY, FEBRUARY 17 AT 11:59 PM

See course website for homework policies.

Reading Read 3.5 and 3.7.

Textbook problems Please solve problems 3.2.6, 3.2.8, 3.4.8, 3.5.2, 3.5.8

Problem 1. Let e_1 , e_2 , e_3 be the standard basis of \mathbb{R}^3 . Let $f_1 = e_1$, $f_2 = e_2$ and $f_3 = e_1 + e_2 + e_3$. Express the dual basis vectors f_1^* , f_2^* and f_3^* as a linear combination of e_1^* , e_2^* and e_3^* . You should find that, even though $e_1 = f_1$ and $e_2 = f_2$, the dual vectors f_1^* and f_2^* are different from e_1^* and e_2^* .

Problem 2. Let $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$ and $\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_n$ be two bases of a vector space V, and let $v_1^*, v_2^*, \ldots, v_n^*$ and $w_1^*, w_2^*, \ldots, w_n^*$ be the dual bases. Let the matrices A and B be defined by $\vec{w}_j = \sum_i A_{ij} \vec{v}_i$ and $w_j^* = \sum_i B_{ij} \vec{v}_i^*$. Show that $B = (A^T)^{-1}$.

Problem 3. Let C be the vector space of real polynomials of degree ≤ 3 . For a real number r, let a_r be the function $f(x) \mapsto f(r)$ in C^* .

- (1) Show that, if r_1 , r_2 , r_3 , r_4 are four distinct real numbers, then a_{r_1} , a_{r_2} , a_{r_3} , a_{r_4} is a basis of C^* .
- (2) Express the linear function $\int_0^3 f(x) dx$ as a linear combination of a_0 , a_1 , a_2 and a_3 .