PROBLEM SET SIX: DUE THURSDAY, FEBRUARY 24 AT 11:59 PM

See course website for homework policies.

Reading Read 5.2, 5.3 and 5.4.

Textbook problems Please solve problems 5.2.3, 5.2.4, 5.2.9, 5.2.10, 5.3.7.

Problem 1. Let V and W be vector spaces and let $A: V \to W$ be a linear transformation.

(1) Show that $\operatorname{Ker}(A^*) = \operatorname{Im}(A)^{\perp}$.

(2) Show that, if V and W are finite dimensional, we also have $\text{Im}(A^*) = \text{Ker}(A)^{\perp}$.

Problem 2. Let V be a vector space over \mathbb{R} , and let $A: V \times V \to \mathbb{R}$ be an alternating multilinear form. Let $\vec{x}, \vec{y}, \vec{z}$ be three vectors in V with $A(\vec{x}, \vec{y}, \vec{z}) = 17$. Compute the following, directly using the axioms of an alternating form:

(1) $A(\vec{y}, \vec{z}, \vec{x})$. (2) $A(\vec{x}, 2\vec{x} + 3\vec{y}, 4\vec{x} + 5\vec{y} + 6\vec{z})$. (3) $A(\vec{x} + 2\vec{y} + 3\vec{z}, 4\vec{x} + 5\vec{y}, 6\vec{x})$. (4) $A(2\vec{x} + \vec{y}, \vec{x} + 2\vec{y}, \vec{z})$.

Problem 3. Let V be a vector space of dimension n over a field F. Let $A: V \times V \times V \longrightarrow F$ be a multilinear form. We will say that A is **symmetric** if, for all vectors $\vec{u}, \vec{v}, \vec{w} \in V$, we have

$$A(\vec{u}, \vec{v}, \vec{w}) = A(\vec{u}, \vec{w}, \vec{v}) = A(\vec{v}, \vec{u}, \vec{w}) = A(\vec{v}, \vec{w}, \vec{u}) = A(\vec{w}, \vec{u}, \vec{v}) = A(\vec{w}, \vec{v}, \vec{u}).$$

What is the dimension of the vector space of symmetric bilinear forms $A: V \times V \times V \longrightarrow F$?

Problem 4. Let *H* be the vector space of differentiable functions $f : \mathbb{R} \to \mathbb{R}$ which satisfy f(0) = f(1) = 0. For f(x) and g(x) in *H*, define

$$\langle f,g\rangle = \int_0^1 f(x)g'(x)dx.$$

Show that \langle , \rangle is an alternating bilinear form $H \times H \to \mathbb{R}$. (You need to check both that it is bilinear and that it is alternating.)