PROBLEM SET SEVEN: DUE THURSDAY, MARCH 10 AT 11:59 PM

See course website for homework policies.

Reading Read 5.6 and 5.7.

Problem 1. Recall that the cross product of two vectors in \mathbb{R}^3 is defined by

$$
\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \times \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} x_2y_3 - y_2x_3 \\ x_3y_1 - y_3x_1 \\ x_1y_2 - y_1x_2 \end{bmatrix}.
$$

For any vector $\vec{c} = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}$ $\Big]$ in \mathbb{R}^3 , define $B_{\vec{c}}(\vec{x}, \vec{y}) := \vec{c} \cdot (\vec{x} \times \vec{y}).$

- (1) Show that, for any vector $\vec{c} \in \mathbb{R}^3$, the function $B_{\vec{c}}($,) is an alternating bilinear form.
- (2) Let $B($, $)$ be any alternating bilinear form on \mathbb{R}^3 . Show that there is a unique vector $\vec{c} \in \mathbb{R}^3$ such that $B(,)$ is $B_{\vec{c}}(,)$.

Problem 2. Let V be an *n* dimensional vector space over a field F. Let e_1, e_2, \ldots, e_n be one basis for V and let f_1, f_2, \ldots, f_n be another basis. Let S be the matrix defined by $f_j = \sum_i S_{ij} e_i$.

- (1) Let $T: V \to V$ be a linear map and define the matrices X and Y by $T(e_j) = \sum_i X_{ij}e_i$ and $T(f_j) = \sum_i Y_{ij} f_i$. Give a formula for Y in terms of X and S.
- (2) Show that $\det X = \det Y$.
- (3) Let $B: V \times V \longrightarrow F$ be a bilinear form and define the matrices P and Q by $B(e_i, e_j) =$ P_{ij} and $B(f_i, f_j) = Q_{ij}$. Give a formula for Q in terms of P and S.
- (4) Show that there is a nonzero element $s \in F$ with det $P = s^2 \det Q$.

Problem 3. Let V be an *n*-dimensional vector space over a field F and let $B: V \times V \rightarrow F$ be an alternating bilinear form. In this problem, we will show that there is some integer r such that there is a basis $\vec{x}_1, \vec{y}_1, \vec{x}_2, \vec{y}_2, \ldots, \vec{x}_r, \vec{y}_r, \vec{z}_1, \vec{z}_2, \ldots, \vec{z}_{n-2r}$ of V such that $B(\vec{x}_i, \vec{y}_i) =$ $-B(\vec{y}_i, \vec{x}_i) = 1$ and all other pairings between the basis vectors are 0. This proof is by induction on n.

- (1) Do the base cases $n = 1$ and $n = 2$.
- (2) Explain why we are done if $B(\vec{v}, \vec{w}) = 0$ for all vectors \vec{v} and \vec{w} in V.

From now on, assume that $n > 2$ and that $B(\vec{v}, \vec{w})$ is not always 0. Choose two vectors \vec{x}, \vec{y} with $B(\vec{x}, \vec{y}) = 1$. Set $V' = {\vec{v} : B(\vec{x}, \vec{v}) = B(\vec{y}, \vec{v}) = 0}.$

- (3) Show that $V = \text{Span}(\vec{x}, \vec{y}) \oplus V'.$
- (4) By induction, V' has a basis $\vec{x}_1, \vec{y}_1, \vec{x}_2, \vec{y}_2, \ldots, \vec{x}_r, \vec{y}_r, \vec{z}_1, \vec{z}_2, \ldots, \vec{z}_{n-2-2r}$ as required. Explain how to finish the proof from here.
- (5) We conclude with an example. Consider the alternating bilinear form

$$
B((u_1, u_2, u_3, u_4), (v_1, v_2, v_3, v_4)) = \sum_{1 \le i < j \le 4} (u_i v_j - u_j v_i)
$$

on \mathbb{R}^4 . Find a basis $\vec{x}_1, \vec{y}_1, \vec{x}_2, \vec{y}_2$ as above.