SOLUTION SET TEN
8.2.1 This is the set of vectors [w =y 2] with w —y + 2z = 0 and 2w + 3z —y + 22 = 0. Row
reducing, we find that a basis for the solutions to these equations is [-1001], [3 -130].
8.2.2 We first make the vectors orthogonal. 5, and [, are already orthogonal. The projection
of B3 onto Span(f;, 52) is Egig‘f;ﬁl + ggzgziﬁz =2[101]4+5 [10-1] =[004]. So the component
of 3 orthogonal to Span(fy, 32) is f3 — [004] =[030].

So we now have orthogonal vectors [101], [10-1], [030]. We rescale these to be orthonormal,

giving:

V2 [?] V2 [Pl]’ M
8.2.12 Write o = a + ay where a; € W and oy € W+, and similarly write 8 = 8; + 2. Then
E(a) = ay and E(f) = 1. We have (E(a), 8) = (a1, b1 + B2) = (a1, B1) + (a1, B2) = (a1, Br)

since a; € W and S, € W, Similarly, (o, E(83)) = {1+, 81) = {ag, B1) + {1, B1) = (a1, Br).
So both expressions are equal to (o, f1).

8.4.4 Let the columns of U be u, v. The vector « must have length 1, so we can write it as

(s8], The vector ¢ must be orthogonal to this, so it is a scalar multiple of [jicf(l)g 9] and, since
¥ is length 1, we have 7 = + [ 29, ],

We now answer the various questions:
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This makes sense: Rotation by 6 followed by rotation by ¢ is rotation by 6 + ¢.
Ui = [ x| = [0 0] = Uno.

Note that, for a real matrix, we have A* = AT,

The matrix of Uy in the rotated basis is U¢U9U¢_1 = Uy, since # and ¢ commute.

8.4.8 We have
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Problem 1. In this problem, we will prove the following result: Let A be a square matrix and
suppose that the characteristic polynomial y 4(z) factors into linear factors x a(x) = [[(x—X;)™.
Then there is a basis in which A is upper triangular.

(1) Let V' be an m-dimensional vector space and let C' : V' — V be a linear transfor-
mation with C™ = 0. Show that V has a basis ¥}, ¥, ..., ¥, such that C(¢;) €
Span(¥, Ua, ..., 7%;_1). Conclude that, in this basis, C' is upper triangular with 0’s on
the diagonal.

(2) Let V' be an m-dimensional vector space, let A be a scalar and let B : V. — V be a
linear transformation with xp(x) = (z — A)™. Show that there is a basis for V' in which
B is upper triangular with A\’s on the diagonal.

(3) Let V' be an m-dimensional vector space, let A : V' — V be a linear transformation
and suppose that the minimal polynomial y4(x) factors into linear factors ya(x) =



[I(z — X\;)™. Show that there is a basis for V' where A is upper triangular with the \;
on the diagonal.

Solution (1): We show, by induction on j, that we can find hnearly independent vectors 77,

Uy, ..., U; such that, for ¢ < j, we have Cv; € Span(i, ¥s, ..., 0i—1). The base case, j = 0, is
clear
So, suppose that we have constructed 7y, ¥, . .., ¥;_1 as above, and put W = Span(t, 0, . . ., Uj_1).

We need to show that, if W is not equal to all of V', we can find some ¥; ¢ W such that Cv; € W.
Take any ¥ not in W and compute ¥, Cv, C*¥, etcetera. Since C™ = 0, we eventually have

C*3 € W; let k be the index such that C*~'¢ ¢ W and C*o € W. Take v; = C*~17.
Solution (2): Apply part (1) to C := B — A1d.

Solution (3): By the primary decomposition theorem, we can choose a basis where A becomes
B

. ' 82
block diagonal as

] where B; has characteristic polynomial (z — A;)™. Then, by

.
the previous part, we can make each B; upper triangular with diagonal entries \;.

Problem 2. Let F be a field and let f(x) = 2™ + f, 12" '+ -+ fiz + fo be an irreducible
polynomial with coefficients in F'.

(1) Let V be an n-dimensional vector space and let A : V — V be a linear transformation

with x4(z) = f(z). Let ¥ be any nonzero vector in V. Show that 7, Av, ..., A"'7 is
a basis of V.

(2) Let A and V' be as in the previous part. Write the matrix of A in the basis 0, Av, ...,
A1y,

Solution (1): There is more than one way to do this, here is the shortest I found. Suppose,
to the contrary, that there is some k < n with A*¥%' € Span(v, A7, ..., A¥~1%), and choose the
minimal such k. Put W = Span(%, A7, ..., A¥~1%), then A maps W to 1tself and dimW =k <
n. So the characteristic polynomial of A]W divides xa(x). But this contradicts that ya(z) is
irreducible.

Solution (2): Now that we know that @, Av, ..., A" 17 is a basis, this question makes sense.
For 0 < k < n—1, we have A(A*¥) = A*17, so the first n — 1 columns of A have a 1 in position
(k4 1,k) and 0’s elsewhere. For the last column, we compute

A(A™ID) = AT = — ([ A" ok LA+ fo) = — faa AVN@) = — LA®D) — fol
where the middle equality is the Cayley-Hamilton theorem. We conclude that the matrix of A

in this basis is

00 0 —fo
1 00 -f
01 0 —fo
001 —fs
000 -« 1 —fuq]

Problem 3. Let V' be the vector space of continuous functions on [—7,7]. Define an inner

product on V' by _
(la)g@) = [ falgarts



(1) Show that the following list of functions is orthonormal: \/Lz?, \/L; sin(nz) for n > 1, and
\/LE cos(nzx) for n > 1.

(2) Let f(x) = x. Find the function in Span(sin x,sin(2x), sin(3x)) which is closest to the
function f(x).

Solution (1): We first check that each of these functions has length 1:
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Next, we check the orthogonality claim. At this point, we can drop out the constants \/%—W and

\/Lw since we are just trying to prove that things are 0.

™

(1,sin(nx)) = /_ sin(nx)dx = 0.

(1, cos(nx)) :/ cos(nz)dx = 0.

—Tr

(cos(ma), sin(nz)) = /_ " cos(m) sin(nz)dz = % /_ " (sin((m + n)z) — sin((m — n)a)) dz = 0.
And, for m # n:

(cos(mx), cos(nx)) = /7T cos(mx) cos(nx)dxr = % /7r (cos((m +n)z) + cos((m — n)z)) dx = 0.

—Tr —Tr

(sin(mz), sin(nx)) = /7r sin(mz) sin(nz)dxr = %/ﬂ (cos((m + n)z) — cos((m — n)z)) dx = 0.

—Tr —Tr

Solution (2): We need to orthogonally project x onto Span(sin(x),sin(2z),sin(3z)). So the

coeflicient of sin(nz) is
(x,sin(nx))

(sin(nz),sin(nzx))
We compute
L 27T<_1)n+1 s

(z,sin(nz)) = / zsin(na)de = “=—>— and (sin(na), sin(n)) = / sin?(na)dz = .

So the orthogonal projection of = onto Span(sin(x), sin(2z), sin(3z)) is

2sin(z) — Zsin(2z) + 2 sin(3x).



