SOLUTION SET TEN

8.2.1 This is the set of vectors $[w \cdot x \cdot y \cdot z]$ with $w - y + z = 0$ and $2w + 3x - y + 2z = 0$. Row reducing, we find that a basis for the solutions to these equations is $[-1001]$, $[3 -130]$.

8.2.2 We first make the vectors orthogonal. β_1 and β_2 are already orthogonal. The projection of β_3 onto $\text{Span}(\beta_1, \beta_2)$ is $\frac{\langle \beta_1, \beta_3 \rangle}{\langle \beta_1, \beta_1 \rangle} \beta_1 + \frac{\langle \beta_2, \beta_3 \rangle}{\langle \beta_2, \beta_2 \rangle}$ $\frac{\langle \beta_2, \beta_3\rangle}{\langle \beta_2, \beta_2\rangle}$ $\beta_2=\frac{4}{2}$ $\frac{4}{2}$ [101] + $\frac{-4}{2}$ [10-1] = [004]. So the component of β_3 orthogonal to $\text{Span}(\beta_1, \beta_2)$ is $\beta_3 - [\begin{array}{cc} 0 & 0 & 4 \end{array}] = [\begin{array}{cc} 0 & 3 & 0 \end{array}].$

So we now have orthogonal vectors $[1 0 1]$, $[1 0 -1]$, $[0 3 0]$. We rescale these to be orthonormal, giving:

$$
\frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \quad \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \quad \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}.
$$

8.2.12 Write $\alpha = \alpha_1 + \alpha_2$ where $\alpha_1 \in W$ and $\alpha_2 \in W^{\perp}$, and similarly write $\beta = \beta_1 + \beta_2$. Then $E(\alpha) = \alpha_1$ and $E(\beta) = \beta_1$. We have $\langle E(\alpha), \beta \rangle = \langle \alpha_1, \beta_1 + \beta_2 \rangle = \langle \alpha_1, \beta_1 \rangle + \langle \alpha_1, \beta_2 \rangle = \langle \alpha_1, \beta_1 \rangle$ since $\alpha_1 \in W$ and $\beta_2 \in W^{\perp}$. Similarly, $\langle \alpha, E(\beta) \rangle = \langle \alpha_1 + \alpha_2, \beta_1 \rangle = \langle \alpha_2, \beta_1 \rangle + \langle \alpha_1, \beta_1 \rangle = \langle \alpha_1, \beta_1 \rangle$. So both expressions are equal to $\langle \alpha_1, \beta_1 \rangle$.

8.4.4 Let the columns of U be \vec{u} , \vec{v} . The vector \vec{u} must have length 1, so we can write it as $\begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$. The vector \vec{v} must be orthogonal to this, so it is a scalar multiple of $\begin{bmatrix} \sin \theta \\ -\cos \theta \end{bmatrix}$ and, since \vec{v} is length 1, we have $\vec{v} = \pm \begin{bmatrix} \sin \theta \\ -\cos \theta \end{bmatrix}$.

We now answer the various questions:

$$
U_{\theta}U_{\phi} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix} = \begin{bmatrix} \cos \theta \cos \phi - \sin \theta \sin \phi & -\cos \theta \sin \phi - \sin \theta \cos \phi \\ \sin \theta \cos \phi + \cos \theta \sin \phi & -\sin \theta \sin \phi + \cos \theta \cos \phi \end{bmatrix} = \begin{bmatrix} \cos(\theta + \phi) & -\sin(\theta + \phi) \\ \sin(\theta + \phi) & \cos(\theta + \phi) \end{bmatrix} = U_{\theta + \phi}.
$$

This makes sense: Rotation by θ followed by rotation by ϕ is rotation by $\theta + \phi$.

$$
U_{\theta}^* = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}^* = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} = U_{-\theta}.
$$

Note that, for a real matrix, we have $A^* = A^T$. The matrix of U_{θ} in the rotated basis is $U_{\phi}U_{\theta}U_{\phi}^{-1} = U_{\theta}$, since θ and ϕ commute.

8.4.8 We have

$$
\begin{bmatrix} 1 & 1 \ -i & i \end{bmatrix} \begin{bmatrix} e^{i\theta} & 0 \ 0 & e^{-i\theta} \end{bmatrix} \begin{bmatrix} 1 & 1 \ -i & i \end{bmatrix}^{-1} = \begin{bmatrix} \frac{e^{i\theta} + e^{-i\theta}}{2} & \frac{-e^{i\theta} + e^{-i\theta}}{2i} \\ \frac{e^{i\theta} - e^{-i\theta}}{2i} & \frac{e^{i\theta} + e^{-i\theta}}{2} \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}.
$$

Problem 1. In this problem, we will prove the following result: Let A be a square matrix and suppose that the characteristic polynomial $\chi_A(x)$ factors into linear factors $\chi_A(x) = \prod (x - \lambda_i)^{n_i}$. Then there is a basis in which A is upper triangular.

- (1) Let V be an m-dimensional vector space and let $C: V \rightarrow V$ be a linear transformation with $C^m = 0$. Show that V has a basis $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_m$ such that $C(\vec{v}_i) \in$ Span $(\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_{i-1})$. Conclude that, in this basis, C is upper triangular with 0's on the diagonal.
- (2) Let V be an m-dimensional vector space, let λ be a scalar and let $B: V \to V$ be a linear transformation with $\chi_B(x) = (x - \lambda)^m$. Show that there is a basis for V in which B is upper triangular with λ 's on the diagonal.
- (3) Let V be an m-dimensional vector space, let $A: V \to V$ be a linear transformation and suppose that the minimal polynomial $\chi_A(x)$ factors into linear factors $\chi_A(x)$

 $\prod (x - \lambda_i)^{n_i}$. Show that there is a basis for V where A is upper triangular with the λ_i on the diagonal.

Solution (1): We show, by induction on j, that we can find linearly independent vectors \vec{v}_1 , $\vec{v}_2, \ldots, \vec{v}_j$ such that, for $i \leq j$, we have $C\vec{v}_i \in \text{Span}(\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_{i-1})$. The base case, $j = 0$, is clear.

So, suppose that we have constructed $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_{j-1}$ as above, and put $W = \text{Span}(\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_{j-1}).$ We need to show that, if W is not equal to all of V, we can find some $\vec{v}_j \notin W$ such that $C\vec{v}_j \in W$. Take any \vec{v} not in W and compute \vec{v} , $C\vec{v}$, $C^2\vec{v}$, etcetera. Since $C^m = 0$, we eventually have $C^k \vec{v} \in W$; let k be the index such that $C^{k-1} \vec{v} \notin W$ and $C^k \vec{v} \in W$. Take $\vec{v}_j = C^{k-1} \vec{v}$.

Solution (2): Apply part (1) to $C := B - \lambda \text{Id}$.

Solution (3): By the primary decomposition theorem, we can choose a basis where A becomes block diagonal as \int^{B_1} B_2
 \ddots
 B_r 1 where B_i has characteristic polynomial $(x - \lambda_i)^{n_i}$. Then, by

the previous part, we can make each B_i upper triangular with diagonal entries λ_i .

Problem 2. Let F be a field and let $f(x) = x^n + f_{n-1}x^{n-1} + \cdots + f_1x + f_0$ be an *irreducible* polynomial with coefficients in F.

- (1) Let V be an *n*-dimensional vector space and let $A: V \to V$ be a linear transformation with $\chi_A(x) = f(x)$. Let \vec{v} be any nonzero vector in V. Show that \vec{v} , $A\vec{v}$, ..., $A^{n-1}\vec{v}$ is a basis of V .
- (2) Let A and V be as in the previous part. Write the matrix of A in the basis \vec{v} , $A\vec{v}$, ..., $A^{n-1}\vec{v}$.

Solution (1): There is more than one way to do this, here is the shortest I found. Suppose, to the contrary, that there is some $k < n$ with $A^k \vec{v} \in \text{Span}(\vec{v}, A\vec{v}, \dots, A^{k-1}\vec{v})$, and choose the minimal such k. Put $W = \text{Span}(\vec{v}, A\vec{v}, \dots, A^{k-1}\vec{v})$, then A maps W to itself, and dim $W = k$ n. So the characteristic polynomial of $A|_W$ divides $\chi_A(x)$. But this contradicts that $\chi_A(x)$ is irreducible.

Solution (2): Now that we know that \vec{v} , $A\vec{v}$, ..., $A^{n-1}\vec{v}$ is a basis, this question makes sense. For $0 \le k \le n-1$, we have $A(A^k \vec{v}) = A^{k+1} \vec{v}$, so the first $n-1$ columns of A have a 1 in position $(k+1, k)$ and 0's elsewhere. For the last column, we compute

$$
A(A^{n-1}\vec{v}) = A^n \vec{v} = -\left(f_{n-1}A^{n-1} + \cdots + f_1A + f_0\right)\vec{v} = -f_{n-1}A^{n-1}(\vec{v}) - \cdots - f_1A(\vec{v}) - f_0\vec{v}
$$

where the middle equality is the Cayley-Hamilton theorem. We conclude that the matrix of A in this basis is

Problem 3. Let V be the vector space of continuous functions on $[-\pi, \pi]$. Define an inner product on V by

$$
\langle f(x), g(x) \rangle = \int_{-\pi}^{\pi} f(x)g(x)dx.
$$

- (1) Show that the following list of functions is orthonormal: $\frac{1}{\sqrt{2}}$ $\frac{1}{2\pi}, \frac{1}{\sqrt{2}}$ $\frac{1}{\pi}$ sin(*nx*) for $n \geq 1$, and $\frac{1}{\sqrt{2}}$ $\frac{1}{\pi} \cos(nx)$ for $n \geq 1$.
- (2) Let $f(x) = x$. Find the function in Span(sin x, sin(2x), sin(3x)) which is closest to the function $f(x)$.

Solution (1): We first check that each of these functions has length 1:

$$
\left\langle \frac{1}{\sqrt{2\pi}}, \frac{1}{\sqrt{2\pi}} \right\rangle = \int_{-\pi}^{\pi} \frac{dx}{\sqrt{2\pi^2}} = \frac{2\pi}{2\pi} = 1.
$$

$$
\left\langle \frac{\sin(nx)}{\sqrt{\pi}}, \frac{\sin(nx)}{\sqrt{\pi}} \right\rangle = \int_{-\pi}^{\pi} \frac{\sin^2(nx)dx}{\sqrt{\pi^2}} = \frac{1}{\pi} \int_{-\pi}^{\pi} \sin^2(nx)dx = \frac{1}{\pi} \int_{-\pi}^{\pi} \left(\frac{1 - \cos(2nx)}{2} \right) dx = \frac{1}{\pi} \left(\frac{2\pi}{2} - 0 \right) = 1.
$$

$$
\left\langle \cos(nx) \cos(nx) \right\rangle = \int_{-\pi}^{\pi} \cos^2(nx)dx = 1 - \int_{-\pi}^{\pi} \cos^2(nx)dx = \frac{1}{\pi} \left(\frac{2\pi}{2} - 0 \right) = 1.
$$

$$
\left\langle \frac{\cos(nx)}{\sqrt{\pi}}, \frac{\cos(nx)}{\sqrt{\pi}} \right\rangle = \int_{-\pi}^{\pi} \frac{\cos^2(nx)dx}{\sqrt{\pi}^2} dx = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos^2(nx)dx = \frac{1}{\pi} \int_{-\pi}^{\pi} \left(\frac{1 + \cos(2nx)}{2} \right) dx = \frac{1}{\pi} \left(\frac{2\pi}{2} + 0 \right) = 1.
$$

Next, we check the orthogonality claim. At this point, we can drop out the constants $\frac{1}{\sqrt{2}}$ $rac{1}{2\pi}$ and $\frac{1}{\sqrt{2}}$ $\overline{\overline{\pi}}$, since we are just trying to prove that things are 0.

$$
\langle 1, \sin(nx) \rangle = \int_{-\pi}^{\pi} \sin(nx) dx = 0.
$$

$$
\langle 1, \cos(nx) \rangle = \int_{-\pi}^{\pi} \cos(nx) dx = 0.
$$

$$
\langle \cos(mx), \sin(nx) \rangle = \int_{-\pi}^{\pi} \cos(mx) \sin(nx) dx = \frac{1}{2} \int_{-\pi}^{\pi} (\sin((m+n)x) - \sin((m-n)x)) dx = 0.
$$
And, for $m \neq n$:

$$
\langle \cos(mx), \cos(nx) \rangle = \int_{-\pi}^{\pi} \cos(mx)\cos(nx)dx = \frac{1}{2} \int_{-\pi}^{\pi} \left(\cos((m+n)x) + \cos((m-n)x) \right) dx = 0.
$$

$$
\langle \sin(mx), \sin(nx) \rangle = \int_{-\pi}^{\pi} \sin(mx)\sin(nx)dx = \frac{1}{2} \int_{-\pi}^{\pi} \left(\cos((m+n)x) - \cos((m-n)x) \right) dx = 0.
$$

Solution (2): We need to orthogonally project x onto $\text{Span}(\sin(x), \sin(2x), \sin(3x))$. So the coefficient of $sin(nx)$ is

$$
\frac{\langle x, \sin(nx) \rangle}{\langle \sin(nx), \sin(nx) \rangle}
$$

.

We compute

$$
\langle x, \sin(nx) \rangle = \int_{-\pi}^{\pi} x \sin(nx) dx = \frac{2\pi (-1)^{n+1}}{n} \quad \text{and} \quad \langle \sin(nx), \sin(nx) \rangle = \int_{-\pi}^{\pi} \sin^2(nx) dx = \pi.
$$

So the orthogonal projection of x onto $\text{Span}(\sin(x),\sin(2x),\sin(3x))$ is

$$
2\sin(x) - \frac{2}{2}\sin(2x) + \frac{2}{3}\sin(3x).
$$