
Solution Set Ten

8.2.1 This is the set of vectors [ w x y z ] with w − y + z = 0 and 2w + 3x − y + 2z = 0. Row
reducing, we find that a basis for the solutions to these equations is [ −1 0 0 1 ], [ 3 −1 3 0 ].

8.2.2 We first make the vectors orthogonal. β1 and β2 are already orthogonal. The projection

of β3 onto Span(β1, β2) is 〈β1,β3〉〈β1,β1〉β1+ 〈β2,β3〉〈β2,β2〉β2 = 4
2

[ 1 0 1 ]+ −4
2

[ 1 0 −1 ] = [ 0 0 4 ]. So the component

of β3 orthogonal to Span(β1, β2) is β3 − [ 0 0 4 ] = [ 0 3 0 ].

So we now have orthogonal vectors [ 1 0 1 ], [ 1 0 −1 ], [ 0 3 0 ]. We rescale these to be orthonormal,
giving:

1√
2

[
1
0
1

]
, 1√

2

[
1
0
−1

]
,
[
0
1
0

]
.

8.2.12 Write α = α1 + α2 where α1 ∈ W and α2 ∈ W⊥, and similarly write β = β1 + β2. Then
E(α) = α1 and E(β) = β1. We have 〈E(α), β〉 = 〈α1, β1 + β2〉 = 〈α1, β1〉 + 〈α1, β2〉 = 〈α1, β1〉
since α1 ∈ W and β2 ∈ W⊥. Similarly, 〈α,E(β)〉 = 〈α1+α2, β1〉 = 〈α2, β1〉+〈α1, β1〉 = 〈α1, β1〉.
So both expressions are equal to 〈α1, β1〉.
8.4.4 Let the columns of U be ~u, ~v. The vector ~u must have length 1, so we can write it as
[ cos θsin θ ]. The vector ~v must be orthogonal to this, so it is a scalar multiple of

[
sin θ
− cos θ

]
and, since

~v is length 1, we have ~v = ±
[

sin θ
− cos θ

]
.

We now answer the various questions:

UθUφ =
[
cos θ − sin θ
sin θ cos θ

] [
cosφ − sinφ
sinφ cosφ

]
=
[
cos θ cosφ−sin θ sinφ − cos θ sinφ−sin θ cosφ
sin θ cosφ+cos θ sinφ − sin θ sinφ+cos θ cosφ

]
=[

cos(θ+φ) − sin(θ+φ)
sin(θ+φ) cos(θ+φ)

]
= Uθ+φ.

This makes sense: Rotation by θ followed by rotation by φ is rotation by θ + φ.

U∗θ =
[
cos θ − sin θ
sin θ cos θ

]∗
=
[

cos θ sin θ
− sin θ cos θ

]
= U−θ.

Note that, for a real matrix, we have A∗ = AT .

The matrix of Uθ in the rotated basis is UφUθU
−1
φ = Uθ, since θ and φ commute.

8.4.8 We have

[ 1 1
−i i ]

[
eiθ 0
0 e−iθ

]
[ 1 1
−i i ]

−1
=

[
eiθ+e−iθ

2
−eiθ+e−iθ

2i
eiθ−e−iθ

2i
eiθ+e−iθ

2

]
=
[
cos θ − sin θ
sin θ cos θ

]
.

Problem 1. In this problem, we will prove the following result: Let A be a square matrix and
suppose that the characteristic polynomial χA(x) factors into linear factors χA(x) =

∏
(x−λi)ni .

Then there is a basis in which A is upper triangular.

(1) Let V be an m-dimensional vector space and let C : V → V be a linear transfor-
mation with Cm = 0. Show that V has a basis ~v1, ~v2, . . . , ~vm such that C(~vi) ∈
Span(~v1, ~v2, . . . , ~vi−1). Conclude that, in this basis, C is upper triangular with 0’s on
the diagonal.

(2) Let V be an m-dimensional vector space, let λ be a scalar and let B : V → V be a
linear transformation with χB(x) = (x−λ)m. Show that there is a basis for V in which
B is upper triangular with λ’s on the diagonal.

(3) Let V be an m-dimensional vector space, let A : V → V be a linear transformation
and suppose that the minimal polynomial χA(x) factors into linear factors χA(x) =



∏
(x − λi)ni . Show that there is a basis for V where A is upper triangular with the λi

on the diagonal.

Solution (1): We show, by induction on j, that we can find linearly independent vectors ~v1,
~v2, . . . , ~vj such that, for i ≤ j, we have C~vi ∈ Span(~v1, ~v2, . . . , ~vi−1). The base case, j = 0, is
clear.

So, suppose that we have constructed ~v1, ~v2, . . . , ~vj−1 as above, and putW = Span(~v1, ~v2, . . . , ~vj−1).
We need to show that, if W is not equal to all of V , we can find some ~vj 6∈ W such that C~vj ∈ W .
Take any ~v not in W and compute ~v, C~v, C2~v, etcetera. Since Cm = 0, we eventually have
Ck~v ∈ W ; let k be the index such that Ck−1~v 6∈ W and Ck~v ∈ W . Take ~vj = Ck−1~v.

Solution (2): Apply part (1) to C := B − λ Id.

Solution (3): By the primary decomposition theorem, we can choose a basis where A becomes

block diagonal as

[ B1
B2

...
Br

]
where Bi has characteristic polynomial (x − λi)ni . Then, by

the previous part, we can make each Bi upper triangular with diagonal entries λi.

Problem 2. Let F be a field and let f(x) = xn + fn−1x
n−1 + · · ·+ f1x+ f0 be an irreducible

polynomial with coefficients in F .

(1) Let V be an n-dimensional vector space and let A : V → V be a linear transformation
with χA(x) = f(x). Let ~v be any nonzero vector in V . Show that ~v, A~v, . . . , An−1~v is
a basis of V .

(2) Let A and V be as in the previous part. Write the matrix of A in the basis ~v, A~v, . . . ,
An−1~v.

Solution (1): There is more than one way to do this, here is the shortest I found. Suppose,
to the contrary, that there is some k < n with Ak~v ∈ Span(~v, A~v, . . . , Ak−1~v), and choose the
minimal such k. Put W = Span(~v, A~v, . . . , Ak−1~v), then A maps W to itself, and dimW = k <
n. So the characteristic polynomial of A|W divides χA(x). But this contradicts that χA(x) is
irreducible.

Solution (2): Now that we know that ~v, A~v, . . . , An−1~v is a basis, this question makes sense.
For 0 ≤ k < n−1, we have A(Ak~v) = Ak+1~v, so the first n−1 columns of A have a 1 in position
(k + 1, k) and 0’s elsewhere. For the last column, we compute

A(An−1~v) = An~v = −
(
fn−1A

n−1 + · · ·+ f1A+ f0
)
~v = −fn−1An−1(~v)− · · · − f1A(~v)− f0~v

where the middle equality is the Cayley-Hamilton theorem. We conclude that the matrix of A
in this basis is 

0 0 0 · · · · · · −f0
1 0 0 · · · · · · −f1
0 1 0 · · · · · · −f2
0 0 1 . . . −f3
...

...
...

. . . . . .
...

0 0 0 · · · 1 −fn−1

 .

Problem 3. Let V be the vector space of continuous functions on [−π, π]. Define an inner
product on V by

〈f(x), g(x)〉 =

∫ π

−π
f(x)g(x)dx.



(1) Show that the following list of functions is orthonormal: 1√
2π

, 1√
π

sin(nx) for n ≥ 1, and
1√
π

cos(nx) for n ≥ 1.

(2) Let f(x) = x. Find the function in Span(sinx, sin(2x), sin(3x)) which is closest to the
function f(x).

Solution (1): We first check that each of these functions has length 1:〈
1√
2π
,

1√
2π

〉
=

∫ π

−π

dx
√

2π
2 =

2π

2π
= 1.

〈
sin(nx)√

π
,
sin(nx)√

π

〉
=

∫ π

−π

sin2(nx)dx
√
π
2 =

1

π

∫ π

−π
sin2(nx)dx =

1

π

∫ π

−π

(
1− cos(2nx)

2

)
dx =

1

π

(
2π

2
− 0

)
= 1.

〈
cos(nx)√

π
,
cos(nx)√

π

〉
=

∫ π

−π

cos2(nx)dx
√
π
2 =

1

π

∫ π

−π
cos2(nx)dx =

1

π

∫ π

−π

(
1 + cos(2nx)

2

)
dx =

1

π

(
2π

2
+ 0

)
= 1.

Next, we check the orthogonality claim. At this point, we can drop out the constants 1√
2π

and
1√
π
, since we are just trying to prove that things are 0.

〈1, sin(nx)〉 =

∫ π

−π
sin(nx)dx = 0.

〈1, cos(nx)〉 =

∫ π

−π
cos(nx)dx = 0.

〈cos(mx), sin(nx)〉 =

∫ π

−π
cos(mx) sin(nx)dx =

1

2

∫ π

−π
(sin((m+ n)x)− sin((m− n)x)) dx = 0.

And, for m 6= n:

〈cos(mx), cos(nx)〉 =

∫ π

−π
cos(mx) cos(nx)dx =

1

2

∫ π

−π
(cos((m+ n)x) + cos((m− n)x)) dx = 0.

〈sin(mx), sin(nx)〉 =

∫ π

−π
sin(mx) sin(nx)dx =

1

2

∫ π

−π
(cos((m+ n)x)− cos((m− n)x)) dx = 0.

Solution (2): We need to orthogonally project x onto Span(sin(x), sin(2x), sin(3x)). So the
coefficient of sin(nx) is

〈x, sin(nx)〉
〈sin(nx), sin(nx)〉

.

We compute

〈x, sin(nx)〉 =

∫ π

−π
x sin(nx)dx =

2π(−1)n+1

n
and 〈sin(nx), sin(nx)〉 =

∫ π

−π
sin2(nx)dx = π.

So the orthogonal projection of x onto Span(sin(x), sin(2x), sin(3x)) is

2 sin(x)− 2
2

sin(2x) + 2
3

sin(3x).


