
Solution Set Eleven

8.5.1 We go through four steps: Compute the characteristic polynomial, compute the eigen-
values, compute the eigenvectors, make them orthogonal:

matrix

[
1 1
1 1

] [
2 1
1 2

] [
cos θ sin θ
sin θ − cos θ

]
char. poly. x2 − 2x x2 − 4x+ 3 x2 − 1

eigenvalues 0, 2 1, 3 1, −1

eigenvectors [ 1
−1 ] , [ 11 ] [ 1

−1 ] , [ 11 ]
[

sin θ
1−cos θ

]
,
[ − sin θ
1+cos θ

]
matrices

P = 1√
2

[ 1 1
−1 1 ]

A = [ 0 0
0 2 ]

P = 1√
2

[ 1 1
−1 1 ]

A = [ 1 0
0 3 ]

P =
[
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

]
A = [ 1 0

0 −1 ]

The computation with P in the bottom right is not obvious, so we explain: We have (sin θ)2 +
(1 − cos θ)2 = cos2 θ + sin2 θ − 2 cos θ + 1 = 2 − 2 cos θ = 4 sin2(θ/2), so the first column of

P is 1
2 sin θ(θ/2)

[
sin θ

1−cos θ
]

=
[
cos(θ/2)
sin(θ/2)

]
. Similarly in the second column, we have (− sin θ)2 + (1 +

cos θ)2 = sin2 θ + cos2 θ + 2 cos θ + 1 = 2 cos θ + 2 = 4 cos2(θ/2) so the second column of P is
1

2 cos(θ/2)

[ − sin θ
1+cos θ

]
=
[
− sin(θ/2)
cos(θ/2)

]
.

8.5.3 This time, we just need to find the eigenvalues. The characteristic polynomial of A is

x3− 9x2− 6 = x(x2− 9x− 6), so the eigenvalues are 0 and 9±
√
105

2
. So D =

 0
9+
√
105

2
9−
√
105

2

.

8.5.6 Let T = U †DU for a unitary matrix U .

The operator T is self-adjoint (also called Hermitian) if and only if T = T †, or, in other words
U †DU = (U †DU)† = U †D†U ††. We have D† = D, since D is diagonal, and U †† = U , so this
simplifies to U †DU = U †DU or D = D. This happens if and only if each eigenvalue λ of D
obeys λ = λ, so λ is real.

The operator T is positive (also called positive definite) if and only if T = T † and, for all

~x 6= ~0, we have ~x†T~x. As we checked above, this means that the eigenvalues are real, so T
is positive definite if and only if ~x†U †DU~x > 0 for all ~x 6= 0. We can regroup this equation
as (U~x)†D(U~x) and, since U is invertible, the vector U~x ranges over all vectors. So we are
requiring that ~y†D~y > 0 for all nonzero ~y. We expand ~y†D~y =

∑n
i=1 yiλiyi =

∑
λi|yi|2 where

the λi are the eigenvalues of D and the yi are the entries of ~y. It is clear that requiring that∑
λi|yi|2 > 0 for all nonzero ~y is the same as imposing that all the λi are > 0.

Finally, T is unitary if and only if T †T = Id. We compute T †T = (U †DU)†(U †DU) =
U †D†U ††U †DU = U †D†DU since U is unitary. So U †D†DU = Id if and only if D†D = Id.
Since D is diagonal, with diagonal entries λi, the matrix D†D has diagonal entries λiλi = |λi|2.
So D†D = Id if and only if |λi|2 = 1 for each λi, as required.

8.5.9 Since A is a real symmetric matrix, we can write A = QTDQ for some orthogonal matrix
Q and some diagonal matrix D. Let λ1, λ2, . . . , λn be the diagonal entries of D. Then A = B3



where

B = QT


3
√
λ1

3
√
λ2

. . .
3
√
λn

Q.
8.5.10 Since A is positive, we can write A = QTDQ where Q is orthogonal and D is diagonal
with entries that are positive real numbers. Then A = B2 where

B = QT


√
λ1 √

λ2
. . . √

λn

Q.
8.5.11 For finite dimensional vector spaces, one can prove this using our results about diago-
nalizability. But it is nicer to prove it without them, with the added benefit of handling the
infinite dimensional case.

So, let A be normal and suppose that An = 0. We must show that A is 0. We will show that
having An = 0 implies that An−1 = 0; continuing in this manner, we will deduce that A = 0.

We have n ≤ 2n−2, so (A†)2n−2A2n−2 = 0. Using the normality, this shows that (A†)n−1An−1(A†)n−1An−1.
So, for any vector ~v, we have 〈(A†)n−1An−1(A†)n−1An−1~v,~v〉 = 0. We rearrange this to

〈(A†)n−1An−1~v, (A†)n−1An−1~v〉 = 0, so (A†)n−1An−1~v = ~0. But then 〈(A†)n−1An−1~v,~v〉 = 0,

which we can rearrange to 〈An−1~v, An−1~v〉. We deduce that An−1~v = ~0 for any ~v, and thus
An−1 = 0. Continuing in this manner, we will deduce that A = 0.

Problem 1. Let V be the vector space of smooth (meaning infinitely differentiable) functions
[0, 2π]→ R which obey f(0) = f(2π) and f ′(0) = f ′(2π). Define an inner product on V by

〈f(x), g(x)〉 =

∫ 2π

0

f(x)g(x)dx.

Define the linear operator L : V → V by L(f) = d2

(dx)2
f . Show that L is selfadjoint, meaning

that 〈L(f), g〉 = 〈f, L(g)〉.

Solution We have 〈L(f), g〉 =
∫ 2π

0
d2f
(dx)2

(x)g(x)dx and 〈f, L(g)〉 =
∫ 2π

0
f(x) d2g

(dx)2
(x)dx. We now

integrate by parts:∫ 2π

0

d2f
(dx)2

(x)g(x)dx = f ′(x)g(x)|2π0 −
∫ 2π

0

f ′(x)g′(x)dx = −
∫ 2π

0

f ′(x)g′(x)dx.

In the second equality, we have used that f ′(0) = f ′(2π) and g(0) = g(2π). But, similarly,∫ 2π

0

f(x) d2g
(dx)2

(x)dx = f(x)g′(x)|2π0 −
∫ 2π

0

f ′(x)g′(x)dx = −
∫ 2π

0

f ′(x)g′(x)dx.

So 〈L(f), g〉 = 〈f, L(g)〉 as desired.

Problem 2. Let A be a linear operator Rn → Rn. In this problem, we will show that A has a
singular value decomposition, meaning that we can find two orthonormal bases (~u1, ~u2, . . . , ~un)
and (~v1, ~v2, . . . , ~vn) for Rn such that A~ui is a scalar multiple of ~vi for each 1 ≤ i ≤ n.



(1) Consider the function |A~x| on the unit sphere {~x|〈~x, ~x〉 = 1}. Let ~u be the vector on
the unit sphere where |A~u| is maximized. Define ~v = A~u. Show that A takes ~u⊥ to ~v⊥.

(2) Show (induct on n) there there is a pair of orthonormal bases (~u1, ~u2, . . . , ~un) and
(~v1, ~v2, . . . , ~vn) for Rn such that A~ui is a scalar multiple of ~vi for each 1 ≤ i ≤ n.

Solution (1): Let ~x be orthogonal to ~u and let ~y = A~x. Normalize ~x to have length 1. We
want to show that ~y is orthogonal to ~v.

Consider |A((cos θ)~u + (sin θ)~x)|. Since (cos θ)~u + (sin θ)~x has length 1 for all θ, the function
|A((cos θ)~u+ (sin θ)~x)| should have a local minimum at θ = 0. We compute

|A((cos θ)~u+ (sin θ)~x)|2 = 〈A((cos θ)~u+ (sin θ)~x), A((cos θ)~u+ (sin θ)~x)〉 =

cos2 θ〈A~u,A~u〉+ cos θ sin θ (〈A~u,A~x〉+ 〈A~x,A~u〉) + sin2 θ〈A~x,A~x〉.

Taking the derivative with respect to θ, we get that 〈A~u,A~x〉 + 〈A~x,A~u〉 = 0. Since 〈 , 〉 is
symmetric, we conclude that 〈A~u,A~x〉 = 0.

Solution (2): We will show by induction on n that there are bases orthonormal bases
(~u1, ~u2, . . . , ~un) and (~v1, ~v2, . . . , ~vn) such that A~ui is a scalar multiple of ~vi for each 1 ≤ i ≤ n.
By the argument above, we can find a unit vector ~u such that A carries ~u⊥ to (A~u)⊥. Put
σ = |A~u|. If σ 6= 0, put ~v = (A~u)/σ; if σ = 0, then take ~v to be any unit vector orthogonal to
(A~u)⊥. In either case, we have σ~v = A~u and A carries (~u)⊥ to (~v)⊥. Inductively, we can find
orthonormal bases ~u2, ~u3, . . . , ~un for (~u)⊥ and ~v2, ~v3, . . . , ~vn for (~v)⊥ such that A~ui = σi~vi for
some σi. Then (~u, ~u2, ~u3, . . . , ~un) and (~v,~v2, ~v3, . . . , ~vn) are the orthonormal bases we seek.


