SOLUTION SET ELEVEN

8.5.1 We go through four steps: Compute the characteristic polynomial, compute the eigen-
values, compute the eigenvectors, make them orthogonal:

tri 11 2 1 cosf sinf
attix 11 1 2 sinf —cosf
char. poly. 22 — 2 22 —4x + 3 2 —1
eigenvalues 0, 2 1, 3 1, -1
eigenvectors [ 4], [{] (4], (4] [ 7ede] s [eeso]
—_ 1711 17511 cos(0/2) —sin(6/2)
matrices P V2 ([fol il P V2 EBl 1] P [Sin(9/2) cos(0/2) }
A=1[53] A=1[p3] A=1§25%]

The computation with P in the bottom right is not obvious, so we explain: We have (sin 0)% +
(1 — cosf)? = cos?f + sin*0 — 2cosf + 1 = 2 — 2cosf = 4sin?(f/2), so the first column of

P is W(@ﬂ) [5inf,] = [Zif((zg)) } Similarly in the second column, we have (—sinf)? + (1 +

cos0)? = sin? 6 + cos? + 2cosf + 1 = 2cosf + 2 = 4cos?(6/2) so the second column of P is
1 |:fsin9:| — |:—sin(9/2)]

2cos(0/2) L 1+cos@ cos(0/2) |°

8.5.3 This time, we just need to find the eigenvalues. The characteristic polynomial of A is

0
9+/105
2* —92% — 6 = x(x* — 9z — 6), so the eigenvalues are 0 and 24195, So D = 2
9-/105
2

8.5.6 Let T = U'TDU for a unitary matrix U.

The operator T is self-adjoint (also called Hermitian) if and only if T'= T, or, in other words
UDU = (U'DU)' = UTD'U™. We have D' = D, since D is diagonal, and UTT = U, so this
simplifies to UTDU = U'DU or D = D. This happens if and only if each eigenvalue A of D
obeys A = ), so \ is real.

The operator T is positive (also called positive definite) if and only if T = TT and, for all
T # 0, we have ZITZ. As we checked above, this means that the eigenvalues are real, so T
is positive definite if and only if ZIUTDUZ > 0 for all & # 0. We can regroup this equation
as (UZ)TD(UZ) and, since U is invertible, the vector UZ ranges over all vectors. So we are
requiring that g"Dg > 0 for all nonzero §. We expand "Dy = Y7 G;\y; = > Ni|yi|* where
the \; are the eigenvalues of D and the y; are the entries of ¢. It is clear that requiring that
S™Ni|yi|* > 0 for all nonzero ¥ is the same as imposing that all the ); are > 0.

Finally, T is unitary if and only if 77T = Id. We compute 77T = (UTDU)'(UTDU) =
UTDIUTTUTDU = UTD'DU since U is unitary. So UTD'DU = 1d if and only if DD = Id.
Since D is diagonal, with diagonal entries );, the matrix DD has diagonal entries \;\; = |\;|2.
So D'D = 1d if and only if |\;|> = 1 for each )\;, as required.

8.5.9 Since A is a real symmetric matrix, we can write A = Q7 DQ for some orthogonal matrix
Q and some diagonal matrix D. Let A\, \a, ..., A\, be the diagonal entries of D. Then A = B3



where

8.5.10 Since A is positive, we can write A = QT DQ where @ is orthogonal and D is diagonal
with entries that are positive real numbers. Then A = B? where

VAL
B=Q" Vs . Q-

VA,

8.5.11 For finite dimensional vector spaces, one can prove this using our results about diago-
nalizability. But it is nicer to prove it without them, with the added benefit of handling the
infinite dimensional case.

So, let A be normal and suppose that A” = 0. We must show that A is 0. We will show that
having A" = 0 implies that A"~! = 0; continuing in this manner, we will deduce that A = 0.

We have n < 2n—2, so (A7)2""242"2 = (. Using the normality, this shows that (AT)"~t A"~ 1(AT)P-1 AL,
So, for any vector @, we have ((AT)""1A" "1 (AN"1A""15 &) = 0. We rearrange this to
((AN=1 415, (A=LAP-15) — 0, so (AT)"~LA"15 — §. But then ((AN™1A"17,7) — 0,

which we can rearrange to (A"~'7, A"~'7). We deduce that A"~'¢ = 0 for any 7, and thus

A" 1 = 0. Continuing in this manner, we will deduce that A = 0.

Problem 1. Let V' be the vector space of smooth (meaning infinitely differentiable) functions
[0, 2] — R which obey f(0) = f(27) and f’(0) = f'(27). Define an inner product on V' by

-/ " f@)gle)d

Define the linear operator L : V- — V by L(f) = % f. Show that L is selfadjoint, meaning
that (L(f),g) = (f,L(g))-

Solution We have (L(f),g) = f% &/ (x)g(x)dz and (f, L(g)) = 027r f(x) dg. (x)dx. We now
integrate by parts:

/0 ' G (@)g(x)de = f(2)g(x)|y — 0 Py @ =— [ f@)g (@),

0

In the second equality, we have used that f/(0) = f/(27) and ¢(0) = g(27). But, similarly,

/ F(@) 2 (@) = f / ' / f(w
So (L(f), 6) = (f, L(g)) as desired.

Problem 2. Let A be a linear operator R” — R"™. In this problem, we will show that A has a
singular value decomposition, meaning that we can find two orthonormal bases (i, Us, . . ., U,)
and (01, ¥, . .., U,) for R" such that Au; is a scalar multiple of v; for each 1 < i < n.




(1) Consider the function |AZ| on the unit sphere {Z|(Z,Z) = 1}. Let @ be the vector on
the unit sphere where | A is maximized. Define ¢ = A@. Show that A takes @+ to .

(2) Show (induct on n) there there is a pair of orthonormal bases (uy,us,...,u,) and
(U}, s, ..., 1,) for R™ such that Au; is a scalar multiple of v; for each 1 <i < n.

Solution (1): Let # be orthogonal to « and let ¥ = AZ. Normalize ¥ to have length 1. We
want to show that 3 is orthogonal to v.

Consider |A((cos0)d + (sinf)Z)|. Since (cos@)u + (sin @)z has length 1 for all §, the function
|A((cos )i + (sin @)Z)| should have a local minimum at # = 0. We compute

| A((cos 0) i + (sin 0)Z)|* = (A((cos 0)i + (sin6)F), A((cosf)ud + (sinf)F)) =
cos? O( Ail, Ail) + cos 0sin 0 ((Ai, AZ) + (AZ, AiD)) + sin? (AT, AT).

Taking the derivative with respect to 0, we get that (Au, AZ) + (A%, Ad) = 0. Since ( , ) is
symmetric, we conclude that (Au, AZ) = 0.

Solution (2): We will show by induction on n that there are bases orthonormal bases
(ty, Uz, ..., Uy,) and (U1, Ua, ..., T,) such that Aw; is a scalar multiple of 7; for each 1 < i < n.
By the argument above, we can find a unit vector # such that A carries 4+ to (A#)*. Put
o = |Ad|. If 0 # 0, put ¥ = (Au)/o; if 0 = 0, then take ¢’ to be any unit vector orthogonal to
(A@)*. In either case, we have o = A# and A carries (@) to (¥)*. Inductively, we can find
orthonormal bases iy, i3, ..., i, for (@)* and oy, ¥, ..., ¥, for () such that Au; = o, for
some ;. Then (U, iy, Us, . .., u,) and (U, Uy, Us, . .., ¥,) are the orthonormal bases we seek.



