
Problem 1. Find linear polynomials at + b and ct + d such that

(at + b)(t2 + 1) + (ct + d)(t2 + t + 1) = 1.

Solution: Expanding the products, we get

at3 + bt2 + at + b + ct3 + (c + d)t2 + (c + d)t + d = 1.

Equating the coefficients of t3, t2, t and 1, we get

a + c = 0
b + c + d = 0

a + c + d = 0
b + d = 1

.

We now run the row reduction algorithm. I’ll put pivots in boxes as I create them.

a + c = 0
b + c + d = 0

a + c + d = 0
b + d = 1

 

a + c = 0
b + c + d = 0

d = 0
b + d = 1

 

a + c = 0

b + c + d = 0
d = 0

− c + d = 1

 

 

a + d = 1

b + 2d = 1
c − d = −1

d = 0

 

a = 1

b = 1
c = −1

d = 0

.

So (a, b, c, d) = (1, 1,−1, 0) and the solution is (t + 1)(t2 + 1)− t(t2 + t + 1) = 1.

Problem 2. Find a nonzero vector which is both in Image
[

1 1
1 2
1 3

]
and in Image

[
1 0
−1 1
0 −1

]
.

We want to solve
p
[

1
1
1

]
+ q

[
1
2
3

]
= r

[
1
−1
0

]
+ s

[
0
1
−1

]
.

or, in other words, [
1 1 −1 0
1 2 1 −1
1 3 0 1

] [ p
q
r
s

]
=
[

0
0
0

]
.

We run the row reduction algorithm:1 1 −1 0
1 2 1 −1
1 3 0 1

 
 1 1 −1 0

0 1 2 −1
0 2 1 1

 
 1 0 −3 1

0 1 2 −1
0 0 −3 3

 
 1 0 0 −2

0 1 0 1

0 0 1 −1


So we deduce that p − 2s = q + s = r − s = 0. So a solution to the linear equations is
(p, q, r, s) = (2,−1, 1, 1). Returning to the original question, we see that

2
[

1
1
1

]
−
[

1
2
3

]
=
[

1
0
−1

]
=
[

1
−1
0

]
+
[

0
1
−1

]
.

So
[

1
0
−1

]
(or any scalar multiple of it) is in the image of both matrices.

Problem 3. Let F be a field (see Section 1.1) in your textbook. Prove the following from the
axioms of a field; you may also use the results that 0x = x0 = 0 and (−1)x = x(−1) = −x.

(1) For any x in F , we have x2 − 1 = (x + 1)(x− 1).
(2) For any elements x and y in F , if xy = 0 then either x = 0 or y = 0.
(3) For any x in F , if x2 = 1 then x = 1 or x = −1.



Solution:

Part (1): Using the distributive law repeatedly: (x + 1)(x − 1) = x(x − 1) + 1(x − 1) =
(x2 + x(−1)) + (x − 1). Using the associative law twice, this is ((x2 + x(−1)) + x) − 1 =
(x2 + (x(−1) + x))− 1. Using x(−1) = −x, this is (x2 + (−x+ x))− 1 = (x2 + 0)− 1 = x2− 1.

Part (2): We break into two cases: x = 0 or x 6= 0. If x = 0, we are done. If not, multiply
both sides of the equation by x−1 to give x−1(xy) = x−10 = 0. We then rewrite the left hand
side using the associative rule: x−1(xy) = (x−1x)y = 1 · y = y. So we have shown that y = 0.

Part (3): We use the two previous parts! If x2 = 1 then x2 − 1 = 0, and we showed that
x2− 1 = (x+ 1)(x− 1). So, by the second part, either x− 1 = 0 or x+ 1 = 0. Adding 1 or −1
respectively to both sides, we get x = 1 or x = −1.

Problem 4. Let A be an `×m matrix and let B be an m× n matrix.

(1) Suppose that Ker(AB) = 0 and Image(B) = Rm. Show that Ker(A) = {~0}.
(2) Suppose that Image(AB) = R` and Ker(A) = {~0}. Show that Image(B) = Rm.

Solution:

Part 1: Suppose that A~y = ~0; we must show that ~y = 0. Since B is surjective, we can find
some ~x with B~x = ~y, so AB~x = ~0. By our assumption that Ker(AB) = 0, this means that

~x = ~0. We deduce that ~y = A~x = A~0 = ~0.

Part 2: Let ~y ∈ Rm, we must find ~x with B~x = ~y. By the hypothesis on AB, we can find a
vector ~x with (AB)~x = A~y. Then, by the injectivity of A, we have B~x = ~y.

Problem 5. Let X be a set and let F be a field. Let FX be the vector space of all functions
f : X → F . (See Example 3 in Section 2.1 of your textbook.) Let FX

finite be the set of functions
f : X → F such that {x ∈ X : f(x) 6= 0} is finite. Show that FX

finite is a subspace of FX .

Solution: We must show that FX
finite is closed under addition and scalar multiplication. For

addition, suppose that f and g are functions in FX
finite. Then {x : f(x)+g(x) 6= 0} is a subset of

{x : f(x) 6= 0} ∪ {x : g(x) 6= 0}, The case of scalar multiplication is even easier: Let f ∈ FX
finite

and let a be a scalar. If a 6= 0, then {x : af(x) 6= 0} = {x : f(x) 6= 0}, so it is finite. If a = 0
then af(x) is 0 everywhere. So, either way, af(x) is in FX

finite.

Problem 6. Let T be the set of functions R → R which are of the form a cos t + b sin t. For
x+ iy in C and f(t) in T , define (x+ iy) ∗ f(t) = xf(t) + y df

dt
. Show that T is a C-vector space

with respect to this scalar multiplication, and the usual addition.

Solution: Since the addition operation is ordinary addition, it is clearly commutative, associa-
tive, has a ~0 and has additive inverses. We now check the conditions involving multiplication.

We have (1 + 0i)f(t) = f(t), checking the axiom of the multiplicative identity.

To check distributivity with two scalars and one vector, we must check that

((x1 + x2) + i(y1 + y2))f(t) = (x1 + iy1)f(t) + (x2 + iy2)f(t).

Indeed, this expands to

(x1 + x2)f(t) + (y1 + y2)df
ft

= x1f(t) + y1
df
ft

+ x2f(t) + y2
df
dt
.

To check distributivity with one scalar and two vectors, we must check that

(x + iy)(f + g) = (x + iy)f + (x + iy)g.



Indeed, this expands to
xf + xg + y df

dt
+ y dg

dt
.

The most interesting, and hardest thing, to check is associativity. We want to show that

(x1 + iy1)
(
(x2 + iy2)f(t)

)
=
(
(x1x2 − y1y2) + i(x1y2 + x2y1)

)
f(t).

The left hand side is

(x1 + iy1)(x2f + y2
df
dt

) = x1x2f + x1y2
df
dt

+ x2y1
df
dt

+ y1y2
d2f
(dt)2

.

The right hand side is
(x1x2 − y1y2)f + (x1y2 + x2y1)df

dt
.

But now notice that, for any f(t) in T , we have d2f
(dt)2

= −f ! So the two formulas match.


