Problem 1. Find linear polynomials $at + b$ and $ct + d$ such that

$$
(at+b)(t2+1)+(ct+d)(t2+t+1)=1.
$$

Solution: Expanding the products, we get

$$
at^3 + bt^2 + at + b + ct^3 + (c + d)t^2 + (c + d)t + d = 1.
$$

Equating the coefficients of t^3 , t^2 , t and 1, we get

$$
a + c = 0 \n b + c + d = 0 \n a + c + d = 0 \n b + d = 1
$$

.

We now run the row reduction algorithm. I'll put pivots in boxes as I create them.

$$
a + c = 0 \quad [a + c = 0 \quad a + c = 0 \quad [b + c + d = 0 \quad \leadsto \quad b + c + d = 0 \quad \leadsto \quad b + c + d = 0 \quad \leadsto \quad b + d = 1 \quad b + d = 1 \quad b + d = 1 \quad -c + d = 1 \quad \leadsto \quad b + 2d = 1 \quad \leadsto \quad b + 2d
$$

So $(a, b, c, d) = (1, 1, -1, 0)$ and the solution is $(t + 1)(t^2 + 1) - t(t^2 + t + 1) = 1$.

Problem 2. Find a nonzero vector which is both in Image $\begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix}$ and in Image $\begin{bmatrix} 1 & 0 \\ -1 & 1 \\ 0 & -1 \end{bmatrix}$ i .

We want to solve

$$
p\begin{bmatrix} \frac{1}{1} \\ 1 \end{bmatrix} + q\begin{bmatrix} \frac{1}{2} \\ 3 \end{bmatrix} = r\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} + s\begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}.
$$

or, in other words,

$$
\begin{bmatrix} 1 & 1 & -1 & 0 \\ 1 & 2 & 1 & -1 \\ 1 & 3 & 0 & 1 \end{bmatrix} \begin{bmatrix} p \\ q \\ r \\ s \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.
$$

We run the row reduction algorithm:

$$
\begin{bmatrix} 1 & 1 & -1 & 0 \ 1 & 2 & 1 & -1 \ 1 & 3 & 0 & 1 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 1 & -1 & 0 \ 0 & 1 & 2 & -1 \ 0 & 2 & 1 & 1 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 0 & -3 & 1 \ 0 & 1 & 2 & -1 \ 0 & 0 & -3 & 3 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 0 & 0 & -2 \ 0 & 1 & 0 & 1 \ 0 & 0 & 1 & -1 \end{bmatrix}
$$

So we deduce that $p - 2s = q + s = r - s = 0$. So a solution to the linear equations is $(p, q, r, s) = (2, -1, 1, 1)$. Returning to the original question, we see that

$$
2\begin{bmatrix} 1\\1\\1 \end{bmatrix} - \begin{bmatrix} 1\\2\\3 \end{bmatrix} = \begin{bmatrix} 1\\0\\-1 \end{bmatrix} = \begin{bmatrix} 1\\-1\\0 \end{bmatrix} + \begin{bmatrix} 0\\1\\-1 \end{bmatrix}.
$$

So $\begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$ i (or any scalar multiple of it) is in the image of both matrices.

Problem 3. Let F be a field (see Section 1.1) in your textbook. Prove the following from the axioms of a field; you may also use the results that $0x = x0 = 0$ and $(-1)x = x(-1) = -x$.

- (1) For any x in F, we have $x^2 1 = (x + 1)(x 1)$.
- (2) For any elements x and y in F, if $xy = 0$ then either $x = 0$ or $y = 0$.
- (3) For any x in F, if $x^2 = 1$ then $x = 1$ or $x = -1$.

Solution:

Part (1): Using the distributive law repeatedly: $(x + 1)(x - 1) = x(x - 1) + 1(x - 1) =$ $(x^{2} + x(-1)) + (x - 1)$. Using the associative law twice, this is $((x^{2} + x(-1)) + x) - 1 =$ $(x^{2} + (x(-1) + x)) - 1$. Using $x(-1) = -x$, this is $(x^{2} + (-x + x)) - 1 = (x^{2} + 0) - 1 = x^{2} - 1$.

Part (2): We break into two cases: $x = 0$ or $x \neq 0$. If $x = 0$, we are done. If not, multiply both sides of the equation by x^{-1} to give $x^{-1}(xy) = x^{-1}0 = 0$. We then rewrite the left hand side using the associative rule: $x^{-1}(xy) = (x^{-1}x)y = 1 \cdot y = y$. So we have shown that $y = 0$. **Part (3):** We use the two previous parts! If $x^2 = 1$ then $x^2 - 1 = 0$, and we showed that $x^2 - 1 = (x + 1)(x - 1)$. So, by the second part, either $x - 1 = 0$ or $x + 1 = 0$. Adding 1 or -1 respectively to both sides, we get $x = 1$ or $x = -1$.

Problem 4. Let A be an $\ell \times m$ matrix and let B be an $m \times n$ matrix.

- (1) Suppose that $\text{Ker}(AB) = 0$ and $\text{Image}(B) = \mathbb{R}^m$. Show that $\text{Ker}(A) = {\vec{0}}$.
- (2) Suppose that $\text{Image}(AB) = \mathbb{R}^{\ell}$ and $\text{Ker}(A) = {\vec{0}}$. Show that $\text{Image}(B) = \mathbb{R}^m$.

Solution:

Part 1: Suppose that $A\vec{y} = \vec{0}$; we must show that $\vec{y} = 0$. Since B is surjective, we can find some \vec{x} with $B\vec{x} = \vec{y}$, so $AB\vec{x} = \vec{0}$. By our assumption that $\text{Ker}(AB) = 0$, this means that $\vec{x} = \vec{0}$. We deduce that $\vec{y} = A\vec{x} = A\vec{0} = \vec{0}$.

Part 2: Let $\vec{y} \in \mathbb{R}^m$, we must find \vec{x} with $B\vec{x} = \vec{y}$. By the hypothesis on AB, we can find a vector \vec{x} with $(AB)\vec{x} = A\vec{y}$. Then, by the injectivity of A, we have $B\vec{x} = \vec{y}$.

Problem 5. Let X be a set and let F be a field. Let F^X be the vector space of all functions $f: X \to F$. (See Example 3 in Section 2.1 of your textbook.) Let F_{finite}^X be the set of functions $f: X \to F$ such that $\{x \in X : f(x) \neq 0\}$ is finite. Show that F_{finite}^X is a subspace of F^X .

Solution: We must show that F_{finite}^X is closed under addition and scalar multiplication. For addition, suppose that f and g are functions in F_{finite}^X . Then $\{x : f(x) + g(x) \neq 0\}$ is a subset of ${x : f(x) \neq 0}$ \cup ${x : g(x) \neq 0}$, The case of scalar multiplication is even easier: Let $f \in F_{\text{finite}}^X$ and let a be a scalar. If $a \neq 0$, then $\{x : af(x) \neq 0\} = \{x : f(x) \neq 0\}$, so it is finite. If $a = 0$ then $af(x)$ is 0 everywhere. So, either way, $af(x)$ is in F_{finite}^X .

Problem 6. Let T be the set of functions $\mathbb{R} \to \mathbb{R}$ which are of the form $a \cos t + b \sin t$. For $x+iy$ in $\mathbb C$ and $f(t)$ in T , define $(x+iy)*f(t) = xf(t)+y\frac{df}{dt}$. Show that T is a $\mathbb C$ -vector space with respect to this scalar multiplication, and the usual addition.

Solution: Since the addition operation is ordinary addition, it is clearly commutative, associative, has a $\vec{0}$ and has additive inverses. We now check the conditions involving multiplication. We have $(1+0i)f(t) = f(t)$, checking the axiom of the multiplicative identity. To check distributivity with two scalars and one vector, we must check that

$$
((x_1 + x_2) + i(y_1 + y_2))f(t) = (x_1 + iy_1)f(t) + (x_2 + iy_2)f(t).
$$

Indeed, this expands to

$$
(x_1 + x_2)f(t) + (y_1 + y_2)\frac{df}{dt} = x_1f(t) + y_1\frac{df}{dt} + x_2f(t) + y_2\frac{df}{dt}.
$$

To check distributivity with one scalar and two vectors, we must check that

$$
(x+iy)(f+g) = (x+iy)f + (x+iy)g.
$$

Indeed, this expands to

$$
xf + xg + y\frac{df}{dt} + y\frac{dg}{dt}.
$$

The most interesting, and hardest thing, to check is associativity. We want to show that

$$
(x_1+iy_1)\big((x_2+iy_2)f(t)\big)=\big((x_1x_2-y_1y_2)+i(x_1y_2+x_2y_1)\big)f(t).
$$

The left hand side is

$$
(x_1 + iy_1)(x_2f + y_2\frac{df}{dt}) = x_1x_2f + x_1y_2\frac{df}{dt} + x_2y_1\frac{df}{dt} + y_1y_2\frac{d^2f}{(dt)^2}.
$$

The right hand side is

$$
(x_1x_2 - y_1y_2)f + (x_1y_2 + x_2y_1)\frac{df}{dt}.
$$

But now notice that, for any $f(t)$ in T, we have $\frac{d^2f}{(dt)^2}$ $\frac{d^2f}{(dt)^2} = -f!$ So the two formulas match.