Problem 1. Find linear polynomials at + b and ct 4+ d such that
(at + b))+ 1)+ (ct+d)(E* +t+1) = 1.
Solution: Expanding the products, we get
at’ +bt* +at +b+ct’ + (c+ )t + (c+d)t +d = 1.
Equating the coefficients of 3, 2, t and 1, we get

a +c =0
b+c+d = 0
a +c+d = 0°

b +d =1

We now run the row reduction algorithm. I'll put pivots in boxes as I create them.

a +c =0 [a] +c =0 [a] +c =0
btc+d =0 btct+d =0 [bl+ctd =0 _
a +c+d =0 d =0 d =0
b +d =1 b +d =1 —c+d =1
[a] +d = 1 [a] =

Db +2a =1 [b = 1
c]—d = -1 = -1
d = 0 d] = o

So (a,b,c,d) = (1,1,—1,0) and the solution is (t + 1)(t* + 1) — t(t* +t + 1) = 1.

Problem 2. Find a nonzero vector which is both in Image [

=

10
%} and in Image [—1 1 ]
3 0 -1
We want to solve

or, in other words,

We run the row reduction algorithm:
11 -1 0 1] 1 -1 0 1] 0 -3 1 1] 0o 0 -2
0

12 1 1|~ 1 2 =1~ |0 [1] 2 -1|~ |0 [1] 0 1
0

13 0 1 02 1 1 0 -3 3 0 0 [1] -1

So we deduce that p —2s = ¢+ s = r —s = 0. So a solution to the linear equations is
(p,q,7,8) = (2,—1,1,1). Returning to the original question, we see that

1] -l = LA =1o+ 4]

So [ 61} (or any scalar multiple of it) is in the image of both matrices.

Problem 3. Let F' be a field (see Section 1.1) in your textbook. Prove the following from the
axioms of a field; you may also use the results that 0x = 20 = 0 and (—1)z = 2(—1) = —=z.

(1) For any x in F, we have 22 — 1 = (z + 1)(z — 1).
(2) For any elements = and y in F, if zy = 0 then either z = 0 or y = 0.
(3) For any z in F,if 22 =1then z =1 or x = —1.



Solution:

Part (1): Using the distributive law repeatedly: (z + 1)(z —1) = z(z — 1) + 1(z — 1) =
(z? + z(—1)) + (z — 1). Using the associative law twice, this is ((z* + z(—1)) +z) — 1 =
(z? + (x(—1) +z)) — 1. Using x(—1) = —x, thisis (z* + (—z+x)) — 1= (2*+0) -1 =2> - 1.
Part (2): We break into two cases: x = 0 or  # 0. If x = 0, we are done. If not, multiply
both sides of the equation by 7! to give x71(zy) = 2710 = 0. We then rewrite the left hand
side using the associative rule: z7'(zy) = (z7'z)y = 1 -y = y. So we have shown that y = 0.

Part (3): We use the two previous parts! If 22 = 1 then 2? — 1 = 0, and we showed that
2?2 — 1= (z+1)(z — 1). So, by the second part, either x —1 =0 or x + 1 = 0. Adding 1 or —1
respectively to both sides, we get x =1 or x = —1.

Problem 4. Let A be an ¢ X m matrix and let B be an m X n matrix.

(1) Suppose that Ker(AB) = 0 and Image(B) = R™. Show that Ker(A) = {0}.
(2) Suppose that Image(AB) = R’ and Ker(A) = {0}. Show that Image(B) = R™.

Solution:

Part 1: Suppose that A7 = 0; we must show that ¥ = 0. Since B is surjective, we can find
some ¥ with BZ = ¢, so ABZ = 0. By our assumption that Ker(AB) = 0, this means that
Z = 0. We deduce that ¥ = A7 = A0 = 0.

Part 2: Let y € R™, we must find ¥ with BZ = . By the hypothesis on AB, we can find a
vector & with (AB)Z = Ay. Then, by the injectivity of A, we have BT = /.

Problem 5. Let X be a set and let I be a field. Let FX be the vector space of all functions
f: X — F. (See Example 3 in Section 2.1 of your textbook.) Let Fz\. . be the set of functions
f: X — F such that {zx € X : f(z) # 0} is finite. Show that F3\,. is a subspace of F*.

Solution: We must show that F... is closed under addition and scalar multiplication. For
addition, suppose that f and g are functions in FZ\, . Then {z : f(z)+g(x) # 0} is a subset of
{x: f(x) #0}U{x: g(x) # 0}, The case of scalar multiplication is even easier: Let f € Fg.. .
and let a be a scalar. If a # 0, then {z : af(z) # 0} = {x : f(x) # 0}, so it is finite. If a =0
then af(z) is 0 everywhere. So, either way, af(z) is in F5...

Problem 6. Let T be the set of functions R — R which are of the form acost + bsint. For
x+1y in C and f(t) in T, define (x +1y) * f(t) = xf(t) + y%. Show that T is a C-vector space
with respect to this scalar multiplication, and the usual addition.

Solution: Since the addition operation is ordinary addition, it is clearly commutative, associa-
tive, has a 0 and has additive inverses. We now check the conditions involving multiplication.

We have (1 + 0i)f(t) = f(t), checking the axiom of the multiplicative identity.

To check distributivity with two scalars and one vector, we must check that

((z1+22) +1(y1 +12)) [() = (21 +iy1) (1) + (22 + iya) (1)
Indeed, this expands to

(@1 4+ 22) f(1) + (91 +y2) F = 1 f (1) + 1 Fy + 22 f (1) + 425
To check distributivity with one scalar and two vectors, we must check that

(z+iy)(f +9) = (x+iy)f + (z +iy)g.



Indeed, this expands to
d d
:cf—l—xg—l—yd—’:%—yd—f.
The most interesting, and hardest thing, to check is associativity. We want to show that

(21 +iy1) (22 +iy2) [ () = ((2122 — 1y2) + i(21y2 + 2211)) f(1).
The left hand side is
d2

(21 +iy1) (22 f + ?/2%) =mTaf + iﬁlyz% + IQZUl% + ?/1%#-

The right hand side is
(w122 — 1) f + (212 + 51723/1)3—];-
d2f

But now notice that, for any f(¢) in 7', we have g =~ f! So the two formulas match.



