Problem 1. Find linear polynomials at + b and ct + d such that

$$(at+b)(t^{2}+1) + (ct+d)(t^{2}+t+1) = 1$$

Solution: Expanding the products, we get

$$at^{3} + bt^{2} + at + b + ct^{3} + (c+d)t^{2} + (c+d)t + d = 1.$$

Equating the coefficients of t^3 , t^2 , t and 1, we get

$$a + c = 0b + c + d = 0a + c + d = 0b + d = 1$$

We now run the row reduction algorithm. I'll put pivots in boxes as I create them.

So (a, b, c, d) = (1, 1, -1, 0) and the solution is $(t+1)(t^2+1) - t(t^2+t+1) = 1$.

Problem 2. Find a nonzero vector which is both in Image $\begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix}$ and in Image $\begin{bmatrix} 1 & 0 \\ -1 & 1 \\ 0 & -1 \end{bmatrix}$.

We want to solve

$$p\begin{bmatrix}1\\1\\1\end{bmatrix} + q\begin{bmatrix}1\\2\\3\end{bmatrix} = r\begin{bmatrix}1\\-1\\0\end{bmatrix} + s\begin{bmatrix}0\\1\\-1\end{bmatrix}.$$

or, in other words,

$$\begin{bmatrix} 1 & 1 & -1 & 0 \\ 1 & 2 & 1 & -1 \\ 1 & 3 & 0 & 1 \end{bmatrix} \begin{bmatrix} p \\ q \\ r \\ s \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

We run the row reduction algorithm:

$$\begin{bmatrix} 1 & 1 & -1 & 0 \\ 1 & 2 & 1 & -1 \\ 1 & 3 & 0 & 1 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 1 & -1 & 0 \\ 0 & 1 & 2 & -1 \\ 0 & 2 & 1 & 1 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 0 & -3 & 1 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & -3 & 3 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 0 & 0 & -2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

So we deduce that p - 2s = q + s = r - s = 0. So a solution to the linear equations is (p, q, r, s) = (2, -1, 1, 1). Returning to the original question, we see that

$$2\begin{bmatrix}1\\1\\1\end{bmatrix} - \begin{bmatrix}1\\2\\3\end{bmatrix} = \begin{bmatrix}1\\0\\-1\end{bmatrix} = \begin{bmatrix}1\\-1\\0\end{bmatrix} + \begin{bmatrix}0\\1\\-1\end{bmatrix}.$$

So $\begin{bmatrix} 1\\ 0\\ -1 \end{bmatrix}$ (or any scalar multiple of it) is in the image of both matrices.

Problem 3. Let F be a field (see Section 1.1) in your textbook. Prove the following from the axioms of a field; you may also use the results that 0x = x0 = 0 and (-1)x = x(-1) = -x.

- (1) For any x in F, we have $x^2 1 = (x + 1)(x 1)$.
- (2) For any elements x and y in F, if xy = 0 then either x = 0 or y = 0.
- (3) For any x in F, if $x^2 = 1$ then x = 1 or x = -1.

Solution:

Part (1): Using the distributive law repeatedly: $(x + 1)(x - 1) = x(x - 1) + 1(x - 1) = (x^2 + x(-1)) + (x - 1)$. Using the associative law twice, this is $((x^2 + x(-1)) + x) - 1 = (x^2 + (x(-1) + x)) - 1$. Using x(-1) = -x, this is $(x^2 + (-x + x)) - 1 = (x^2 + 0) - 1 = x^2 - 1$. **Part (2):** We break into two cases: x = 0 or $x \neq 0$. If x = 0, we are done. If not, multiply both sides of the equation by x^{-1} to give $x^{-1}(xy) = x^{-1}0 = 0$. We then rewrite the left hand side using the associative rule: $x^{-1}(xy) = (x^{-1}x)y = 1 \cdot y = y$. So we have shown that y = 0. **Part (3):** We use the two previous parts! If $x^2 = 1$ then $x^2 - 1 = 0$, and we showed that $x^2 - 1 = (x + 1)(x - 1)$. So, by the second part, either x - 1 = 0 or x + 1 = 0. Adding 1 or -1 respectively to both sides, we get x = 1 or x = -1.

Problem 4. Let A be an $\ell \times m$ matrix and let B be an $m \times n$ matrix.

- (1) Suppose that $\operatorname{Ker}(AB) = 0$ and $\operatorname{Image}(B) = \mathbb{R}^m$. Show that $\operatorname{Ker}(A) = \{\vec{0}\}$.
- (2) Suppose that $\text{Image}(AB) = \mathbb{R}^{\ell}$ and $\text{Ker}(A) = \{\vec{0}\}$. Show that $\text{Image}(B) = \mathbb{R}^{m}$.

Solution:

Part 1: Suppose that $A\vec{y} = \vec{0}$; we must show that $\vec{y} = 0$. Since *B* is surjective, we can find some \vec{x} with $B\vec{x} = \vec{y}$, so $AB\vec{x} = \vec{0}$. By our assumption that Ker(AB) = 0, this means that $\vec{x} = \vec{0}$. We deduce that $\vec{y} = A\vec{x} = A\vec{0} = \vec{0}$.

Part 2: Let $\vec{y} \in \mathbb{R}^m$, we must find \vec{x} with $B\vec{x} = \vec{y}$. By the hypothesis on AB, we can find a vector \vec{x} with $(AB)\vec{x} = A\vec{y}$. Then, by the injectivity of A, we have $B\vec{x} = \vec{y}$.

Problem 5. Let X be a set and let F be a field. Let F^X be the vector space of all functions $f: X \to F$. (See Example 3 in Section 2.1 of your textbook.) Let F_{finite}^X be the set of functions $f: X \to F$ such that $\{x \in X : f(x) \neq 0\}$ is finite. Show that F_{finite}^X is a subspace of F^X .

Solution: We must show that F_{finite}^X is closed under addition and scalar multiplication. For addition, suppose that f and g are functions in F_{finite}^X . Then $\{x : f(x) + g(x) \neq 0\}$ is a subset of $\{x : f(x) \neq 0\} \cup \{x : g(x) \neq 0\}$, The case of scalar multiplication is even easier: Let $f \in F_{\text{finite}}^X$ and let a be a scalar. If $a \neq 0$, then $\{x : af(x) \neq 0\} = \{x : f(x) \neq 0\}$, so it is finite. If a = 0 then af(x) is 0 everywhere. So, either way, af(x) is in F_{finite}^X .

Problem 6. Let T be the set of functions $\mathbb{R} \to \mathbb{R}$ which are of the form $a \cos t + b \sin t$. For x + iy in \mathbb{C} and f(t) in T, define $(x + iy) * f(t) = xf(t) + y\frac{df}{dt}$. Show that T is a \mathbb{C} -vector space with respect to this scalar multiplication, and the usual addition.

Solution: Since the addition operation is ordinary addition, it is clearly commutative, associative, has a $\vec{0}$ and has additive inverses. We now check the conditions involving multiplication. We have (1 + 0i)f(t) = f(t), checking the axiom of the multiplicative identity. To check distributivity with two scalars and one vector, we must check that

$$((x_1 + x_2) + i(y_1 + y_2))f(t) = (x_1 + iy_1)f(t) + (x_2 + iy_2)f(t).$$

Indeed, this expands to

$$(x_1 + x_2)f(t) + (y_1 + y_2)\frac{df}{ft} = x_1f(t) + y_1\frac{df}{ft} + x_2f(t) + y_2\frac{df}{dt}.$$

To check distributivity with one scalar and two vectors, we must check that

$$(x+iy)(f+g) = (x+iy)f + (x+iy)g.$$

Indeed, this expands to

$$xf + xg + y\frac{df}{dt} + y\frac{dg}{dt}$$

The most interesting, and hardest thing, to check is associativity. We want to show that

$$(x_1 + iy_1)((x_2 + iy_2)f(t)) = ((x_1x_2 - y_1y_2) + i(x_1y_2 + x_2y_1))f(t).$$

The left hand side is

$$(x_1 + iy_1)(x_2f + y_2\frac{df}{dt}) = x_1x_2f + x_1y_2\frac{df}{dt} + x_2y_1\frac{df}{dt} + y_1y_2\frac{d^2f}{(dt)^2}.$$

The right hand side is

$$(x_1x_2 - y_1y_2)f + (x_1y_2 + x_2y_1)\frac{df}{dt}.$$

But now notice that, for any f(t) in T, we have $\frac{d^2f}{(dt)^2} = -f!$ So the two formulas match.