
2.4.1 One could do this systematically by row reduction, but it is quicker to just fool around:

e4 = 1
2
α4

e3 = α2 − e4 = α2 − 1
2
α4

e1 = α3 − 4e4 = α3 − 2α4

e2 = α1 − e1 = α1 − α3 + 2α4

So the coordinates of the standard basis vectors in this basis are

e1 =

[
0
0
1
−2

]
e2 =

[
1
0
−1
2

]
e3 =

[
0
1
0
−1/2

]
e4 =

[
0
0
0

1/2

]
.

2.4.3 We have e1 = α3, e3 = α3−α1 and e2 = α2−e1−e3 = α2−α3−(α3−α1) = α1+α2−2α3.
So

[e1]B =
[
0
0
1

]
[e2]B =

[
1
1
−2

]
[e3]B =

[
−1
0
1

]
.[

a
b
c

]
B

= [ae1 + be2 + ce3]B = a
[
0
0
1

]
+ b
[

1
1
−2

]
+ c
[
−1
0
1

]
=
[

b−c
b

a−2b+c

]
.

2.4.5 Since x21 + x22 = y21 + y22 = 1, the vectors are not 0. Since x1y1 + x2y2 = 0, the vectors
are not proportional.

We now find the coordinates of [ ab ] in the basis [ x1
y1 ], [ x2

y2 ]. So we want to find scalars c1 and
c2 with [

a
b

]
= c1

[
x1
y1

]
+ c2

[
x2
y2

]
.

One can do this by slogging ahead in the standard way, but the slick way is to take the dot
product of each side of this equation with each of the vectors [ x1

y1 ] and [ x2
y2 ]

(x1a+ y1b) = c1(x
2
1 + y21) + c2(x1x2 + y1y2) = c1 · 1 + c2 · 0 = c1

(x2a+ y2b) = c1(x1x2 + y1y2) + c2(x
2
2 + y22) = c1 · 0 + c2 · 1 = c2

So [
a
b

]
B

=

[
x1a+ y1b
x2a+ y2b

]
.

2.4.6 (a) We want to assume there are no scalars a, b and c such that a+ beix + ce−ix for all
x. There are many ways to approach this, one of the easy ones is to plug in x = 0, π/2 and
π, to give

a + b + c = 0
a + ib − ic = 0
a − b − c = 0

Row reduction then gives a = b = c = 0.

2.6.3 The nicest way to do this is to use column reduction to find a particularly nice basis
of this space. Here is the effect of the column reduction process:

−1 3 1
0 4 4
1 −2 0
2 5 9

 


1 0 0
0 1 0
−1 1/4 0
−2 11/4 0

 .



So a basis for the space is

[
1
0
−1
−2

]
,

[ 0
1

1/4
11/4

]
. Every vector in this space is thus of the form

x1

[
1
0
−1
−2

]
+ x2

[ 0
1

1/4
11/4

]
=

[ x1
x2

−x1+x2/4
−2x1+11/4x2

]
.

So a vector

[
x1
x2
x3
x4

]
is of this form if and only if x3 = −x1 + x2/4 and x4 = −2x1 + 11/4x2. In

other words, we are looking at the vectors which are in the kernel of[
1 −1/4 1 0
2 −11/4 0 1

]
.

There are many other ways to do this as well, and many other matrices with the same kernel.

2.6.6 This is very similar to 2.6.3. We start by column reducing
3 1 2 6
21 7 14 42
0 −1 0 −1
9 −2 6 13
0 −1 1 0

 


1 0 0 0
7 0 0 0
0 1 0 0
3 5 0 0
0 0 1 0

 .
(a) Our basis is 

1
7
0
3
0

 ,


0
0
1
5
0

 ,


0
0
0
0
1

 .
(b) We have

c1


1
7
0
3
0

+ c2


0
0
1
5
0

+ c3


0
0
0
0
1

 =


c1
7c1
c2

3c1 + 5c2
c3

 .

So a vector

[ x1
x2
x3
x4
x5

]
is of this form if and only if x2 = 7x1 and x4 = 3x1 + 5x3.

(c) From the above computations, the answer is
[
x1
x3
x5

]
.

Problem 1: We have R3 = X + Y , since any vector
[
x
y
z

]
is of the form

[ x
y

x+y

]
+
[

0
0

z−x−y

]
.

To check that X ∩ Y = {~0}, suppose that
[
x
y
z

]
is in the intersection. Then x = y = 0, but

also z = x+ y, so z = 0.

Problem 2:

(1) This is true. Every polynomial f(x) can be written as f(0)+(f(x)−f(0)), with f(0) ∈ C
and f(x)− f(0) ∈ P , and C ∩ P is clearly {0}.
(2) This is false. If f(0) 6= f(1) then f(x) is not in C +Q.



(3) This is false. The polynomial x is in L ∩ P .

(4) This is true. For a polynomial f , let λ(x) be the unique linear polynomial with λ(0) =
f(0) and λ(1) = f(1). Then f(x) = λ(x)+(f(x)−λ(x)), with λ(x) ∈ L and f(x)−λ(x) ∈ Q.
To see that L ∩Q = {0}, note that any polynomial of degree ≤ 1 which vanishes at both 0
and 1 is the 0-polynomial.

Problem 3: Recall that any linearly independent subset of V has cardinality at most dimV .
Thus, we can find a linearly independent subset S of V which is of maximum cardinality
among all S containing {~v1, ~v2, . . . , ~vk}. We claim that S is a basis of V . By construction,
S is linearly independent, so we just need to check that S spans. Suppose, for the sake of
contradiction, that ~w is not in the span of S. Then S ∪ {~w} is a larger linearly independent
set containing {~v1, ~v2, . . . , ~vk}.
Problem 4

(1) This follows directly from the definitions. The statement In ⊇ In+1 says that Image(T n) ⊇
Image(T n+1). Indeed, if ~y = T n+1~x, then ~y = T n(T~x), so any vector in Image(T n+1) is also
in Image(T n). Similarly, the statement that Kn ⊆ Kn+1 says that Ker(T n) ⊆ Ker(T n+1).

Indeed, if T n~x = ~0 then T n+1~x = T (~0) = ~0.

(2) From part (1), we have dim I1 ≥ dim I2 ≥ dim I3 ≥ · · · and dimK1 ≤ dimK2 ≤
dimK3 ≤ · · · . But a decreasing sequence of nonnegative integers must eventually stop, and
an increasing sequence of integers bounded above by dimV must stop. Once the dimensions
become equal, the spaces must be equal.

(3) We have T (IN) = IN+1 = IN . So T is a surjective map from IN → IN and, as IN is a
finite dimensional vector space, this means that T restricted to IN is invertible.

(4) We first check that IN ∩KN = 0. Let ~x ∈ IN ∩KN . So TN~x = ~0. But ~x ∈ IN and we

just showed that T restricted to IN is invertible, so this shows that ~x = T−N~0 = ~0.

We now show how to write an arbitrary vector ~v as the sum of a vector from IN and vector
from KN . The vector TN~v is in IN so, by part (3), we have some vector ~u in IN with
TN~u = TN~v. Then ~v = ~u+ (~v − ~u). We constructed ~u to be in IN , so we will be done if we

show that ~v − ~u is in KN . Indeed, TN(~v − ~u) = TN~v − TN~u = ~0.


