3.2.6 The image of UT is contained in the image of U. Since U is a map R? — R3, its image
is at most two dimensional. So the image of UT' is at most 2-dimensional, and UT' is not
invertible. (One can make a similar argument regarding Ker(UT).) More generally, if p < ¢, T
is a map R? — R? and U is a map R? — R?, then the composition UT is not invertible.

)-
J

3.2.8 The condition that T? = 0 means that, for any vector ¥, the image T'(v) is in Ker(T
Thus, Im(7) € Ker(T). An example of a linear operator for which 72 = 0 but T # 0 is [ .
|:./L’

3.4.8 Following the hint, let 7' = [~ sinf] We want to find a vector [y ]| with T'[§] =
We write this out as equations:

(cos@)x — (sinf)y = ¥
(sinf)z + (cosf)y = ey -

etf +67i0

0 . .
5 , this gives:

) i0_
and sin f = &=¢

Using the relations cosf = 5

_ei9 61'9 67:9—677:9
=5 - S5y = 0
ei@ _2(;71'9 X + _ei€2+ei0 y _ 0
These equations give
_ 10 0 2 0 __ —if 2%
J_ (le—l—'e >/,:—’L'andy:(6 ‘e ‘)/(Z>:—
r (e —e)/(2i) T (e — €i?) /2
Fortunately, these equations are consistent, and they show that we can take [5] =[]
Similarly, we have T'[}] = e~ [}].

So

1 11Je® o711 117"
=5 ]

3.5.2 Let the dual basis be 31, (a2, B3. So we must have «; - 3; = 1 and «; - 3; = 0. We can
write these equations conveniently in matrix form

— o — [ | | |
- Q2 — p1 B2 P3| =1ds
— oz —] | | |
or, concretely,
1 0 -1 |
11 Bi B2 B3 Ids
2 2 0 |
So
o 1o -17" [1 1 -1/2
B By P3| =11 1 1 =|-1 -1 1
o 2.2 0 0 1 -1/2
So
1 1 ~1/2



3.5.8 A vector [@1 @2 @3 @1 25 ] is in W (or, as the book says, W°) if it satisfies the equations:

r1 + 229 4+ a3 = 0
T2 + 3$3 + 31‘4 + 5 = 0.
Ty + 41’2 + 61’3 + 4ZE4 + x5 = 0

Row reducing these equations, we get

T 4I4 + 3135 = 0
T9 - 3.T4 — 2$5 =0
T3 + 2.174 + Ty =0
SO B
I —41’4 - 3[L’5 —4 -3
i) 35(]4 + 2175 3 2
T3 | = —21'4 — Iy = T4 —2| + Ty —1
Ty T4 1 0
T5 Ty 0 1
So a basis for W+ is )
—4] [-3
3 2
—2|, |-1
1 0
0 1

(Of course, there are many other bases.)

Problem 1. Let e, ey, e3 be the standard basis of R3. Let fi = e1, fo = €3 and f3 = e; +ea+e;.
Express the dual basis vectors f;, f5 and f; as a linear combination of e}, e and e3. You should
find that, even though e; = f; and ey = f5, the dual vectors f; and f; are different from e
and e3.

Solution: Writing f; = (ae} + bej + cej), we must have

fitfy=t = o =1

fi(f2)=0 = b =0 .

fi(f3)=0 = a+b+c=0
Solving the equations, a =1, b = 0 and ¢ = —1, so f{ = e} — e5. Similarly, f5 = e — €5 and
i =5
Problem 2. Let v},05, ..., v, and w, W, ..., W, be two bases of a vector space V', and let
vy, vy, ..., v and wi, w;, ..., w; be the dual bases. Let the matrices A and B be defined by

Wy =Y, Aijt; and wi = Y7, Byt Show that B = (AT)™".
Solution: We are supposed to have
- 1 5=
wj (W) = {0 Iy
Expanding the left hand side, we have

i k k

i,k



In the last step, we have used that v} (vy) = 1 if ¢ = k, and v; (7)) = 0 for i # k.

But Y, BijAke is the (j,¢) entry of BYA. So we have shown that BTA = Id and hence
B = (AT)"1

Problem 3. Let C be the vector space of real polynomials of degree < 3. For a real number
r, let a, be the function f(z) — f(r) in C*.

(1) Show that, if ry, ro, 73, 4 are four distinct real numbers, then a,,, a,,, a,,, a,, is a basis
of C*.
(2) Express the linear function fo x)dx as a linear combination of ag, a;, ay and as.

Solution (1) Since C' is 4-dimensional, so is C*, so it is enough to either show that a,,, a,.,,
ary, ar, span, or to show that they are linearly independent. I'll check linear independence.

Suppose we had a linear relation c;a,, + c2a,, + csa,, + csa,, = 0. Concretely, this means that,
for every cubic polynomial f(z), we have

crf(r) +caf (r2) +esf(rs) + caf(ra) = 0.
Taking f(z) = (z — o) (x — r3)(x — 1ry), We get
ci(ry —re)(rp —r3)(ra—714) +04+04+0=0
so ¢; = 0. Similar, ¢ = ¢3 = ¢4 = 0 and we have proved linear independence.

(2) We want to find coefficients ¢, ¢1, cq, ¢3 such that, for all cubics f(x), we have

/Of f(@)dz = cof(0) + e f (1) + caf (2) + csf(3).

Plugging in the cubic (z — 0)(z — 1)(xz — 2), we get

/0 (x —0)(z — 1)(z — 2)dx = 6¢3

SO

Similarly
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So the integral is %ao + %al + %ag + %ag.

We have shown that, for cubic polynomials, we have

[ e =30+ 350+ 372) + 5.
It also turns out for other smooth functions f(x), we have the excellent approximation:
[ e = 2 070)+370) 43521+ 73).

This is called “Simpson’s 3/8 rule”.



