3.2.6 The image of UT is contained in the image of U. Since U is a map $\mathbb{R}^2 \to \mathbb{R}^3$, its image is at most two dimensional. So the image of UT is at most 2-dimensional, and UT is not invertible. (One can make a similar argument regarding Ker(UT).) More generally, if $p < q$, T is a map $\mathbb{R}^q \to \mathbb{R}^p$ and U is a map $\mathbb{R}^p \to \mathbb{R}^q$, then the composition UT is not invertible. **3.2.8** The condition that $T^2 = 0$ means that, for any vector \vec{v} , the image $T(\vec{v})$ is in Ker(T). Thus, Im(T) \subseteq Ker(T). An example of a linear operator for which $T^2 = 0$ but $T \neq 0$ is $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. **3.4.8** Following the hint, let $T = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ $\int_{\sin \theta}^{\cos \theta} \frac{-\sin \theta}{\cos \theta}$. We want to find a vector $\begin{bmatrix} x \\ y \end{bmatrix}$ with $T \begin{bmatrix} x \\ y \end{bmatrix} = e^{i\theta} \begin{bmatrix} x \\ y \end{bmatrix}$. We write this out as equations:

$$
\begin{array}{rcl}\n(\cos \theta)x & - & (\sin \theta)y & = & e^{i\theta}x \\
(\sin \theta)x & + & (\cos \theta)y & = & e^{i\theta}y\n\end{array}.
$$

Using the relations $\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$ $\frac{e^{-e^{-i\theta}}}{2}$ and $\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$ $\frac{-e^{-i\theta}}{2i}$, this gives:

$$
\frac{-e^{i\theta}+e^{i\theta}}{2}x - \frac{e^{i\theta}-e^{-i\theta}}{2i}y = 0
$$

$$
\frac{e^{i\theta}-e^{-i\theta}}{2i}x + \frac{-e^{i\theta}+e^{i\theta}}{2}y = 0
$$

These equations give

$$
\frac{y}{x} = \frac{(-e^{i\theta} + e^{i\theta})/2}{(e^{i\theta} - e^{-i\theta})/(2i)} = -i \text{ and } \frac{y}{x} = \frac{(e^{i\theta} - e^{-i\theta})/(2i)}{(e^{i\theta} - e^{i\theta})/2} = -i.
$$

Fortunately, these equations are consistent, and they show that we can take $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ -i \end{bmatrix}$. Similarly, we have $T\begin{bmatrix} 1 \\ i \end{bmatrix} = e^{-i\theta} \begin{bmatrix} 1 \\ i \end{bmatrix}$. So

$$
T = \begin{bmatrix} 1 & 1 \\ -i & i \end{bmatrix} \begin{bmatrix} e^{i\theta} & 0 \\ 0 & e^{-i\theta} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -i & i \end{bmatrix}^{-1}.
$$

3.5.2 Let the dual basis be β_1 , β_2 , β_3 . So we must have $\alpha_i \cdot \beta_i = 1$ and $\alpha_i \cdot \beta_j = 0$. We can write these equations conveniently in matrix form

$$
\begin{bmatrix} - & \alpha_1 & - \\ - & \alpha_2 & - \\ - & \alpha_3 & - \end{bmatrix} \begin{bmatrix} | & | & | \\ \beta_1 & \beta_2 & \beta_3 \\ | & | & | \end{bmatrix} = \mathrm{Id}_3
$$

or, concretely,

$$
\begin{bmatrix} 1 & 0 & -1 \\ 1 & 1 & 1 \\ 2 & 2 & 0 \end{bmatrix} \begin{bmatrix} | & | & | \\ \beta_1 & \beta_2 & \beta_3 \\ | & | & | \end{bmatrix} = \mathrm{Id}_3
$$

So

$$
\begin{bmatrix} | & | & | \\ \beta_1 & \beta_2 & \beta_3 \\ | & | & | & | \end{bmatrix} = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 1 & 1 \\ 2 & 2 & 0 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 1 & -1/2 \\ -1 & -1 & 1 \\ 0 & 1 & -1/2 \end{bmatrix}.
$$

$$
\beta_1 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \quad \beta_2 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \quad \beta_3 = \begin{bmatrix} -1/2 \\ 1 \\ -1/2 \end{bmatrix}.
$$

So

3.5.8 A vector $[x_1 \ x_2 \ x_3 \ x_4 \ x_5]$ is in W^{\perp} (or, as the book says, W°) if it satisfies the equations:

$$
x_1 + 2x_2 + x_3 = 0
$$

\n
$$
x_2 + 3x_3 + 3x_4 + x_5 = 0
$$

\n
$$
x_1 + 4x_2 + 6x_3 + 4x_4 + x_5 = 0
$$

.

Row reducing these equations, we get

$$
\begin{array}{ccccccc}\nx_1 & & & 4x_4 & + & 3x_5 & = & 0 \\
x_2 & & - & 3x_4 & - & 2x_5 & = & 0 \\
x_3 & + & 2x_4 & + & x_5 & = & 0\n\end{array}
$$

so

so
\n
$$
\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} -4x_4 - 3x_5 \\ 3x_4 + 2x_5 \\ -2x_4 - x_5 \\ x_4 \\ x_5 \end{bmatrix} = x_4 \begin{bmatrix} -4 \\ 3 \\ -2 \\ 1 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} -3 \\ 0 \\ 1 \\ 1 \end{bmatrix}.
$$
\nSo a basis for W^{\perp} is
\n
$$
\begin{bmatrix} -4 \\ 3 \\ -2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -3 \\ 2 \\ -1 \\ 0 \\ 1 \end{bmatrix}.
$$
\n
$$
(G_1^{\text{g} \text{ curves, there are many other bases}}).
$$

(Of course, there are many other bases.)

Problem 1. Let e_1, e_2, e_3 be the standard basis of \mathbb{R}^3 . Let $f_1 = e_1, f_2 = e_2$ and $f_3 = e_1 + e_2 + e_3$. Express the dual basis vectors f_1^*, f_2^* and f_3^* as a linear combination of e_1^*, e_2^* and e_3^* . You should find that, even though $e_1 = f_1$ and $e_2 = f_2$, the dual vectors f_1^* and f_2^* are different from e_1^* and e_2^* .

Solution: Writing $f_1^* = (ae_1^* + be_2^* + ce_3^*)$, we must have

Solving the equations, $a = 1$, $b = 0$ and $c = -1$, so $f_1^* = e_1^* - e_3^*$. Similarly, $f_2^* = e_2^* - e_3^*$ and $f_3^* = e_3^*$.

Problem 2. Let $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$ and $\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_n$ be two bases of a vector space V, and let $v_1^*, v_2^*, \ldots, v_n^*$ and $w_1^*, w_2^*, \ldots, w_n^*$ be the dual bases. Let the matrices A and B be defined by $\vec{w}_j = \sum_i A_{ij} \vec{v}_i$ and $w_j^* = \sum_i B_{ij} \vec{v}_i^*$. Show that $B = (A^T)^{-1}$.

Solution: We are supposed to have

$$
w_j^*(\vec{w_\ell}) = \begin{cases} 1 & j = \ell \\ 0 & j \neq \ell \end{cases}.
$$

Expanding the left hand side, we have

$$
w_j^*(\vec{w_\ell}) = \left(\sum_i B_{ij} v_i^*\right) \left(\sum_k A_{k\ell} \vec{v_k}\right) = \sum_{i,k} B_{ij} A_{k\ell} v_i^*(\vec{v_k}) = \sum_k B_{kj} A_{k\ell}.
$$

In the last step, we have used that $v_i^*(\vec{v}_k) = 1$ if $i = k$, and $v_i^*(\vec{v}_k) = 0$ for $i \neq k$. $i(v_k) = 1$ if $i = \kappa$, and v_i

But $\sum_{k} B_{kj} A_{k\ell}$ is the (j, ℓ) entry of $B^T A$. So we have shown that $B^T A = \text{Id}$ and hence $B = (A^T)^{-1}.$

Problem 3. Let C be the vector space of real polynomials of degree \leq 3. For a real number r, let a_r be the function $f(x) \mapsto f(r)$ in C^* .

- (1) Show that, if r_1 , r_2 , r_3 , r_4 are four distinct real numbers, then $a_{r_1}, a_{r_2}, a_{r_3}, a_{r_4}$ is a basis of C^* .
- (2) Express the linear function $\int_0^3 f(x)dx$ as a linear combination of a_0 , a_1 , a_2 and a_3 .

Solution (1) Since C is 4-dimensional, so is C^* , so it is enough to either show that a_{r_1}, a_{r_2} , a_{r_3} , a_{r_4} span, or to show that they are linearly independent. I'll check linear independence.

Suppose we had a linear relation $c_1a_{r_1} + c_2a_{r_2} + c_3a_{r_3} + c_4a_{r_4} = 0$. Concretely, this means that, for every cubic polynomial $f(x)$, we have

$$
c_1 f(r_1) + c_2 f(r_2) + c_3 f(r_3) + c_4 f(r_4) = 0.
$$

Taking $f(x) = (x - r_2)(x - r_3)(x - r_4)$, we get

$$
c_1(r_1 - r_2)(r_1 - r_3)(r_2 - r_4) + 0 + 0 + 0 = 0
$$

so $c_1 = 0$. Similar, $c_2 = c_3 = c_4 = 0$ and we have proved linear independence.

(2) We want to find coefficients c_0, c_1, c_2, c_3 such that, for all cubics $f(x)$, we have

$$
\int_0^3 f(x)dx = c_0 f(0) + c_1 f(1) + c_2 f(2) + c_3 f(3).
$$

Plugging in the cubic $(x-0)(x-1)(x-2)$, we get

$$
\int_0^3 (x-0)(x-1)(x-2)dx = 6c_3
$$

so

$$
c_3 = \frac{1}{6} \int_0^3 (x - 0)(x - 1)(x - 2) dx = \frac{1}{6} \frac{9}{4} = \frac{3}{8}.
$$

Similarly

$$
c_0 = -\frac{1}{6} \int_0^3 (x - 1)(x - 2)(x - 3) dx = \left(-\frac{1}{6}\right)\left(-\frac{9}{4}\right) = \frac{3}{8}.
$$

\n
$$
c_1 = \frac{1}{2} \int_0^3 (x - 0)(x - 2)(x - 3) dx = \left(-\frac{1}{2}\right)\left(-\frac{9}{4}\right) = \frac{9}{8}.
$$

\n
$$
c_2 = \frac{1}{2} \int_0^3 (x - 0)(x - 1)(x - 3) dx = \left(-\frac{1}{2}\right)\left(-\frac{9}{4}\right) = \frac{9}{8}.
$$

So the integral is $\frac{3}{8}a_0 + \frac{9}{8}$ $\frac{9}{8}a_1 + \frac{9}{8}$ $\frac{9}{8}a_2+\frac{3}{8}$ $\frac{3}{8}a_3.$

We have shown that, for cubic polynomials, we have

$$
\int_0^3 f(x)dx = \frac{3}{8} (f(0) + 3f(1) + 3f(2) + f(3)).
$$

It also turns out for other smooth functions $f(x)$, we have the excellent approximation:

$$
\int_0^3 f(x)dx \approx \frac{3}{8} \left(f(0) + 3f(1) + 3f(2) + f(3) \right).
$$

This is called "Simpson's 3/8 rule".