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5.2.3 These are all straightforward computations:

[ a bc d ]
[
d −b
−c a

]
=
[
d −b
−c a

]
[ a bc d ] =

[
ad−bc 0

0 ad−bc
]
.

det
[
d −b
−c a

]
= da− (−b)(−c) = ad− bc.

And
adj [ a cb d ] =

[
d −b
−c a

]
=
[
d −b
−c a

]T
.

5.2.4 If AB = Id then det(AB) = det(A) det(B), so det(A) 6= 0. When det(A) 6= 0, we have
the explicit formula:

[ a bc d ]
−1

= 1
det(A)

[
d −b
−c a

]
.

5.2.9 (a) By linearity, we have D(~v1, ~v2, . . . , 0, . . . , ~vn) = 0D(~v1, ~v2, . . . , ~vi, . . . , ~vn) = 0, where
the vector ~vi may be chosen arbitrarily.

(b) Suppose we add a scalar multiple of ~vi to ~vj. Then

D(~v1, ~v2, . . . , ~vi, . . . , c~vi+~vj, . . . , ~vn) = cD(~v1, ~v2, . . . , ~vi, . . . , ~vi, . . . , ~vn)+D(~v1, ~v2, . . . , ~vi, . . . , ~vj, . . . , ~vn) =

c · 0 +D(~v1, ~v2, . . . , ~vi, . . . , ~vj, . . . , ~vn).

We have used the alternating property to show that D(~v1, ~v2, . . . , ~vi, . . . , ~vi, . . . , ~vn) = 0.

5.2.10 (a) The rank of a 2 × 3 matrix is at most 2. If c1 6= 0, then the second and third
columns of A are linearly independent, so rank(A) = 2; a similar argument applies if c2 or
c3 6= 0. Conversely, suppose that rank(A) = 2, so the image of A is two dimensional. The
image of A is spanned by the columns of A, so there must be two linearly independent columns
of A, and those two columns give a nonzero ci.

(b) Assuming that A has rank 2, the kernel of A is one dimensional, so we just need to check
that

[ a11 a12 a13a21 a22 a23 ]
[
c1
c2
c3

]
= [ 00 ] .

In other words, we need to check that

a11(a12a23 − a13a22) + a12(a13a21 − a11a23) + a13(a11a22 − a12a21) = 0 and

a21(a12a23 − a13a22) + a22(a13a21 − a11a23) + a23(a11a22 − a12a21) = 0.

This is a straightforward computation.

5.3.7. If A is upper triangular, this means that Aij = 0 whenever i > j. The determinant
of A is the sum of ±A1σ(1)A2σ(2) · · ·Anσ(n), where the sum ranges over all permutations σ of
{1, 2, 3, . . . , n}. If σ is a permutation which is not the identity, then there is some i with
σ(i) < i, so Aiσ(i) = 0. So the determinant is A11A22 · · ·Ann.

Problem 1. Let V and W be vector spaces and let A : V → W be a linear transformation.

(1) Show that Ker(A∗) = Im(A)⊥.
(2) Show that, if V and W are finite dimensional, we also have Im(A∗) = Ker(A)⊥.

Solution: (1) Let w∗ be a vector in W ∗. By definition, w∗ is in Ker(A∗) if A∗(w∗) = 0, which
is the same as saying that, for every ~v ∈ V , we have A∗(w∗)(~v) = 0. Unwinding the definition
of A∗, this is the same as saying that w∗(A(~v)) = 0 for all ~v ∈ V . Meanwhile, the definition of
Ker(A)⊥ is also that w∗(A(~v)) = 0 for all ~v ∈ V .



(2) We can show that Im(A∗) ⊆ Ker(A)⊥ without using finite dimensionality. Indeed, let
w∗ ∈ W ∗, we will show that A∗(w∗) is in Ker(A)⊥. In other words, we must show that, if
~v ∈ Ker(A), then A∗(w∗)(~v) = 0. Indeed, we have A∗(w∗)(~v) = w∗(A(~v) = w∗(0) = 0.

Now, for the reverse direction, we compute dimensions. Let dimV = m, let dimW = n and let
r be the rank of A. Then A∗ also has rank r. So dim Im(A∗) = r, while dim Ker(A) = m− r, so
dim Ker(A)⊥ = m−(m−r) = r. We showed in the previous paragraph that Im(A∗) ⊆ Ker(A)⊥,
and we have now shown that they both have the same dimension, so they are equal.

Problem 2. Let V be a vector space over R, and let A : V × V × V −→ R be an alternating
multilinear form. Let ~x, ~y, ~z be three vectors in V with A(~x, ~y, ~z) = 17. Compute the following,
directly using the axioms of an alternating form:

(1) A(~y, ~z, ~x).
(2) A(~x, 2~x+ 3~y, 4~x+ 5~y + 6~z).
(3) A(~x+ 2~y + 3~z, 4~x+ 5~y, 6~x).
(4) A(2~x+ ~y, ~x+ 2~y, ~z).

Solution

A(~y, ~z, ~x) = −A(~y, ~x, ~z) = A(~x, ~y, ~z) = 17.

A(~x, 2~x+ 3~y, 4~x+ 5~y + 6~z) = A(~x, 3~y, 5~y + 6~z) =

3A(~x, ~y, 5~y + 6~z) = 3A(~x, ~y, 6~z) = 18A(~x, ~y, ~z) = 18× 17 = 306.

A(~x+ 2~y + 3~z, 4~x+ 5~y, 6~x) = 6A(~x+ 2~y + 3~z, 4~x+ 5~y, ~x) = 6A(2~y + 3~z, 5~y, ~x) =

6× 5×A(2~y+ 3~z, ~y, ~x) = 6× 5×A(3~z, ~y, ~x) = 6× 5× 3A(~z, ~y, ~x) = −6× 5× 3× 17 = −1530.

A(2~x+~y, ~x+2~y, ~z) = 2A(~x, ~x, ~z)+4A(~x, ~y, ~z)+A(~y, ~x, ~z)+2A(~y, ~y, ~z) = 2×0+4×17−17+0×17 = 51.

Problem 3. Let V be a vector space of dimension n over a field F . Let A : V × V × V −→ F
be a multilinear form. We will say that A is symmetric if, for all vectors ~u, ~v, ~w ∈ V , we have

A(~u,~v, ~w) = A(~u, ~w,~v) = A(~v, ~u, ~w) = A(~v, ~w, ~u) = A(~w, ~u,~v) = A(~w,~v, ~u).

What is the dimension of the vector space of symmetric bilinear forms A : V × V × V −→ F?

A bilinear form is determined by its values on the triples of basis vectors, meaning the values
A(ei, ej, ek) for 1 ≤ i, j, k ≤ n. Moreover, by symmetry, we can reorder the inputs, so A is
determined by the values of A(ei, ej, ek) for 1 ≤ i ≤ j ≤ k ≤ n. Conversely, for any values we
assign to those A(ei, ej, ek), we can define a symmetric trilinear form. So we just need to count

the number of triples (i, j, k) with 1 ≤ i ≤ j ≤ k ≤ n. The number of such triples is n(n+1)(n+2)
6

.

Problem 4. Let H be the vector space of differentiable functions f : R → R which satisfy
f(0) = f(1) = 0. For f(x) and g(x) in H, define

〈f, g〉 =

∫ 1

0

f(x)g′(x)dx.

Show that 〈 , 〉 is an alternating bilinear form H ×H → R. (You need to check both that it is
bilinear and that it is alternating.)



We check bilinearity:∫ 1

0

(f1(x) + f2(x))g′(x)dx =

∫ 1

0

f1(x)g′(x)dx+

∫ 1

0

f2(x)g′(x)dx.∫ 1

0

f(x)d(g1(x)+g2(x))
dx

dx =

∫ 1

0

f(x)(g′1(x) + g′2(x))dx =

∫ 1

0

f(x)g′1(x)dx+

∫ 1

0

f(x)g′2(x)dx.∫ 1

0

(cf(x))g′(x)dx = c

∫ 1

0

f(x)g′(x)dx =

∫ 1

0

f(x)d(cg(x))
dx

dx.

Now, we check that the form is alternating:∫ 1

0

f(x)f ′(x)dx = 1
2
f(x)

∣∣1
x=0

= 1
2

(
f(1)2 − f(0)2

)
= 1

2

(
02 − 02

)
= 0.


