SOLUTION SET SIX

5.2.3 These are all straightforward computations:
[Ccl g] [:ic _ab} = [flc _ab] [(Z 3] = [adabc ad(ibc] '
And

5.2.4 If AB = Id then det(AB) = det(A) det(B), so det(A) # 0. When det(A) # 0, we have

the explicit formula:

[& g]_l - detl(A) [flc _ab] :

—

5.2.9 (a) By linearity, we have D(¥,7s,...,0,...,0,) = 0D(¥, 0y, ..., ¥, ..., 0,) = 0, where
the vector ; may be chosen arbitrarily.

(b) Suppose we add a scalar multiple of ¢; to ¢;. Then

D(Uy, Vs, .oy Uy oo, COATy, ..o Uy) = DUy, Uny oo Uy oo Uy oo U )+ D (U1, Uy oo Uiy oo Ty oo, Uy) =
c 04 D(Uy, Vg, .o Uiy ooy Ty oo, Uy).
We have used the alternating property to show that D(¥, ¥, ..., ;... , U ...,0,) = 0.

5.2.10 (a) The rank of a 2 x 3 matrix is at most 2. If ¢; # 0, then the second and third
columns of A are linearly independent, so rank(A) = 2; a similar argument applies if ¢y or
c3 # 0. Conversely, suppose that rank(A) = 2, so the image of A is two dimensional. The
image of A is spanned by the columns of A, so there must be two linearly independent columns
of A, and those two columns give a nonzero c¢;.

(b) Assuming that A has rank 2, the kernel of A is one dimensional, so we just need to check
that

ez 8] =19).
In other words, we need to check that
a11(012a23 - G13<122) + G12(a13a21 - &11@23) + @13(G11G22 - a12a21) =0 and
azl(@12@23 - G13CL22) + G22(6113a21 - a11a23) + a23(alla22 - a12021) = 0.
This is a straightforward computation.

5.3.7. If A is upper triangular, this means that A;; = 0 whenever ¢ > j. The determinant
of A is the sum of £A,(1)A2(2) - - - Ano(n), Where the sum ranges over all permutations o of
{1,2,3,...,n}. If o is a permutation which is not the identity, then there is some ¢ with
o(i) < 1,50 Ajsiy = 0. So the determinant is Ay Ag -+ Ayp.

Problem 1. Let V and W be vector spaces and let A : V — W be a linear transformation.

(1) Show that Ker(A*) = Im(A)*.
(2) Show that, if V and W are finite dimensional, we also have Im(A*) = Ker(A)*.

Solution: (1) Let w* be a vector in W*. By definition, w* is in Ker(A*) if A*(w*) = 0, which
is the same as saying that, for every v € V, we have A*(w*)(v) = 0. Unwinding the definition
of A*, this is the same as saying that w*(A(v)) = 0 for all ¥ € V. Meanwhile, the definition of
Ker(A)* is also that w*(A(7)) =0 for all ¥ € V.



(2) We can show that Im(A*) C Ker(A)* without using finite dimensionality. Indeed, let
w* € W*, we will show that A*(w*) is in Ker(A)*. In other words, we must show that, if
v € Ker(A), then A*(w*)(¥) = 0. Indeed, we have A*(w*)(v) = w*(A(?) = w*(0) = 0.

Now, for the reverse direction, we compute dimensions. Let dim V' = m, let dim W = n and let
r be the rank of A. Then A* also has rank r. So dim Im(A*) = r, while dim Ker(A) = m —r, so
dim Ker(A4)* = m—(m—r) = r. We showed in the previous paragraph that Im(A4*) C Ker(A4)*,
and we have now shown that they both have the same dimension, so they are equal.

Problem 2. Let V be a vector space over R, and let A:V xV xV — R be an alternating
multilinear form. Let Z, ¥/, 2 be three vectors in V' with A(Z, ¢, 2) = 17. Compute the following,
directly using the axioms of an alternating form:

(1) A(7.7,7).

(2) A(Z, 27 4 3y,47 + by + 62).
(3) A(Z+ 2y + 37,42 + by, 67).
(4) A% +y, 7+ 2y, 7).

Solution

A(Z,27 4+ 39,47 4+ 5y + 62) = A(Z, 3y, 5y + 62) =
3A(Z, 7,5y + 62) = 3A(Z, v, 62) = 18A(Z, v, 2) = 18 x 17 = 306.

A(Z 4 2y + 37,42 + 5y, 67) = 6A(T + 2y + 37,47 + 5y, ¥) = 6A(2y + 32,57, %) =
6x5xAQ2y+32,y,7) =6x5xA32,7,%¥) =6x5x3A(2,7,¥) = —6 x5 x 3 x 17 = —1530.

AQ2Z+y, 42y, 2) = 2A(Z, T, 2)+4A(Z, ¥, 2)+A(Y, T, 2)+2A(Y, 7, Z) = 2x0+4x17—17+0x17 = 51.

Problem 3. Let V be a vector space of dimension n over a field F. Let A: V xV xV — F
be a multilinear form. We will say that A is symmetric if, for all vectors u, v, W € V', we have
A(u, v, W) = A(u,w, v) = AV, 4, W) = AU, W, @) = AW, 4, ¥) = A(W, 0, d).

What is the dimension of the vector space of symmetric bilinear forms A: V x V x V — F?

A bilinear form is determined by its values on the triples of basis vectors, meaning the values
Alei,ej,er) for 1 < 4,5,k < n. Moreover, by symmetry, we can reorder the inputs, so A is
determined by the values of A(e;,ej,e;) for 1 < i < j <k < n. Conversely, for any values we
assign to those A(e;, e;, e;), we can define a symmetric trilinear form. So we just need to count

the number of triples (i, j, k) with 1 < ¢ < j < k < n. The number of such triples is w.

Problem 4. Let H be the vector space of differentiable functions f : R — R which satisfy
f(0) = f(1) = 0. For f(x) and g(z) in H, define

- [ ey

Show that (, ) is an alternating bilinear form H x H — R. (You need to check both that it is
bilinear and that it is alternating.)



We check bilinearity:

/l(fl( )+ fao(z dx—/ fiz d$+/1f2 )g'(z)d

/Olf( +gz(x)dx /f (g91(x) + gh(x dx_/f d$+/1f(x)g2(x)dx

[t s [ vz

Now, we check that the form is alternating:
1



