
Problem 1. Recall that the cross product of two vectors in R3 is defined by[
x1
x2
x3

]
×
[
y1
y2
y3

]
=
[ x2y3−y2x3
x3y1−y3x1
x1y2−y1x2

]
.

For any vector ~c =
[
c1
c2
c3

]
in R3, define B~c(~x, ~y) := ~c · (~x× ~y).

(1) Show that, for any vector ~c ∈ R3, the function B~c( , ) is an alternating bilinear form.
(2) Let B( , ) be any alternating bilinear form on R3. Show that there is a unique vector

~c ∈ R3 such that B( , ) is B~c( , ).

Solution: Part 1: We must check:

• Additivity: ~c · ((~x1 + ~x2)× ~y) = ~c · (~x1 × ~y + ~x2 × ~y) = ~c · (~x1 × ~y) + ~c · (~x2 × ~y) and
~c · (~x× (~y1 + ~y2)) = ~c · (~x× ~y1 + ~x× ~y2) = ~c · (~x× ~y1) + ~c · (~x× ~y2).
• Scalar multiplication: ~c · ((a~x)× ~y) = a~c · (~x× ~y) = ~c · (~x× (a~y)).

• Alternation: ~c · (~x× ~x) = ~c ·~0 = 0.

Part 2: We first write down a general alternating bilinear form. Let e1, e2, e3 be the standard
basis of R3. Then B(e1, e1) = B(e2, e2) = B(e3, e3) = 0 and define B(e1, e2) = −B(e2, e1) = p,
B(e1, e3) = −B(e3, e1) = r, B(e2, e3) = −B(e3, e2) = r. Then we have

B(x1e1 + x2e2 + x3e3, y1e1 + y2e2 + y3e3) =
3∑

i,j=1

xiyjB(ei, ej)

= p(x1y2 − x2y1) + q(x1y3 − x3y1) + r(x2y3 − x3y2).

This is
[

r
−q
p

]
· (~x× ~y), so we take ~c =

[
r
−q
p

]
(and no other ~c works).

Problem 2. Let V be an n dimensional vector space over a field F . Let e1, e2, . . . , en be one
basis for V and let f1, f2, . . . , fn be another basis. Let S be the matrix defined by fj =

∑
i Sijei.

(1) Let T : V → V be a linear map and define the matrices X and Y by T (ej) =
∑

iXijei
and T (fj) =

∑
i Yijfi. Give a formula for Y in terms of X and S.

(2) Show that detX = detY .
(3) Let B : V ×V −→ F be a bilinear form and define the matrices P and Q by B(ei, ej) =

Pij and B(fi, fj) = Qij. Give a formula for Q in terms of P and S.
(4) Show that there is a nonzero element s ∈ F with detP = s2 detQ.

Solution Part 1: There are slicker ways to do this computation, but I’ll write out the brute
force solution. We have

T (fj) =
∑
i

Yijfi =
∑
i

Yij

(∑
h

Shieh

)
=
∑
`,i

S`iYije`.

But also

T (fj) = T

(∑
k

Skjek

)
=
∑
k

SkjT (ek) =
∑
k

Skj

(∑
`

X`ke`

)
=
∑
k,`

X`kSkje`.

Since the e’s are a basis, we can set their coefficients equal to get∑
i

S`iYij =
∑
k

X`kSkj.



Written as a matrix equation, this says that SY = XS, so Y = S−1XS.

Part 2: Taking determinants, we get det(Y ) = det(S)−1 det(X) det(S) = det(X).

Part 3: We compute

Qij = B(fi, fj) = B

(∑
h

Shieh,
∑
k

Skjek

)
=
∑
h,k

ShiSkjB(eh, ek) =
∑
h,k

ShiSkjPhk.

We can write this as a matrix equation: Q = STPS.

Part 4: We have det(Q) = det(ST ) det(P ) det(S) = det(S)2 det(P ) where s = det(S).

Problem 3. Let V be an n-dimensional vector space over a field F and let B : V × V → F
be an alternating bilinear form. In this problem, we will show that there is some integer r
such that there is a basis ~x1, ~y1, ~x2, ~y2, . . . , ~xr, ~yr, ~z1, ~z2, . . . , ~zn−2r of V such that B(~xi, ~yi) =
−B(~yi, ~xi) = 1 and all other pairings between the basis vectors are 0. This proof is by induction
on n.

(1) Do the base cases n = 1 and n = 2.
(2) Explain why we are done if B(~v, ~w) = 0 for all vectors ~v and ~w in V .

From now on, assume that n > 2 and that B(~v, ~w) is not always 0. Choose two vectors ~x, ~y
with B(~x, ~y) = 1. Set V ′ = {~v : B(~x,~v) = B(~y,~v) = 0}.

(3) Show that V = Span(~x, ~y)⊕ V ′.
(4) By induction, V ′ has a basis ~x1, ~y1, ~x2, ~y2, . . . , ~xr, ~yr, ~z1, ~z2, . . . , ~zn−2−2r as required.

Explain how to finish the proof from here.
(5) We conclude with an example. Consider the alternating bilinear form

B((u1, u2, u3, u4), (v1, v2, v3, v4)) =
∑

1≤i<j≤4

(uivj − ujvi)

on R4. Find a basis ~x1, ~y1, ~x2, ~y2 as above.

Solution Part 1: When n = 1, the form B must be 0, since there is only one basis vector e1
and we have B(e1, e1) = 0. So we take r = 0 and ~z1 = e1. Now, take n = 2. Let e1, e2 be a
basis for V . If B(e1, e2) = 0, then B is 0, so we can take r = 0 with ~z1 = e1 and ~z2 = e2. If
B(e1, e2) = b 6= 0, then we can take r = 1 with ~x1 = e1 and ~y1 = e2/b.

Part 2: We just take r = 0 and take ~z1, ~z2, . . . , ~zn to be any basis of V .

Part 3: We need to check that Span(~x, ~y) ∩ V ′ = {0} and V = Span(~x, ~y) + V ′. For the first,
consider a vector a~x+b~y. This vector will be in V ′ if and only if B(~x, a~x+b~y) = B(~y, a~x+b~y) = 0.
We expand B(~x, a~x + b~y) = bB(~x, ~y) = b and B(~y, a~x + b~y) = aB(~y, ~x) = −a. So −a = b = 0
and the vector is 0.

Now, we must show that any vector ~v ∈ V is of the form (a~x + b~y) + ~w for ~w ∈ V ′. Indeed,
take ~w = ~v −B(~v, ~y)~x−B(~x,~v)~y. We need to check that ~w is in V ′. We have

B(~x, ~w) = B
(
~x,~v−B(~v, ~y)~x−B(~x,~v)~y

)
= B(~x,~v)−0−B(~x,~v)B(~x, ~y) = B(~x,~v)−B(~x,~v)1 = 0.

B(~y, ~w) = B
(
~y,~v−B(~v, ~y)~x−B(~x,~v)~y

)
= B(~y,~v)−B(~v, ~y)B(~y, ~x)+0 = B(~y,~v)−(−1)B(~v, ~y) = 0.

Part 4: We simply take the basis ~x1, ~y1, ~x2, ~y2, . . . , ~xr, ~x, ~y, ~z1, ~z2, . . . , ~zn−2−2r. We constructed
V ′ such that B(~x,~v) = B(~y,~v) = 0 for all ~v in V ′, which means that ~x and ~y have the correct
pairing with all the other basis vectors in this list. They also pair to 1 with each other and all
the other vectors, inductively, have the correct pairing, so the result holds.



Part 5: We carry out the algorithm implied in the inductive procedure. Put ~x1 = (1, 0, 0, 0)
and ~y1 = (0, 1, 0, 0). Let V ′ = {~v : B(~x1, ~v) = B(~y1, ~v) = 0}. We compute explicitly that V ′ is
the set of (v1, v2, v3, v4) such that

v2 + v3 + v4 = −v1 + v3 + v4 = 0.

We see that a basis of V ′ is (1,−1, 1, 0), (1,−1, 0, 1). Then B ((1,−1, 1, 0), (1,−1, 0, 1)) =
(−1) + 1− (−1) + (−1)− 1− (−1)− 1− (−1) + 1 = 1. So we can take ~x2 = (1,−1, 1, 0) and
~y2 = (1,−1, 0, 1).


