SOLUTION SET EIGHT

6.2.3 More precisely, we will show that, if A is upper triangular, then the characteristic poly-

nomial of A is [, (z — A;;). We can prove this by induction on n. Doing row expansion on
the bottom row of A gives

z—A1n —A12 —Aiz - —Aitn-1) A_1p
0 =x—Az —Az - —Agp- A_an
det 0 0 I*Agg 7A3(n—1) A_gn
T=An-1)(n-1) —Am-1)n
z—Ann
z—Ain —Ai2 —Aiz - —Ajpo
0 r—Agy —Az3 - _A2(n71)
= (x — A,p) det 0 0 a—Asz -  —Azmo1
. I_A(n—.l)(n—l)
n—1 n
= (z — Ann) H(l’ — Au) = H(l’ — Au)
1=1 =1

as desired.

6.2.4 We first compute the characteristic polynomial:

det [xgg o3 4 ] =2° —2° =5z — 3= (z+ 1)*(z — 3).
16 —8 x=—7

So the eigenvalues are —1 and 3.
We now compute the eigenspaces. The (—1)-eigenspace is the kernel of

—9 44 100 —8 44
—834| 4+ (010 =] -844].
~168 7 001 16 8 8

This matrix row reduces to

[1 —-1/2 71/2}
00 0 |-
0 0 0

A basis for the (—1)-eigenspace is thus [1({)2], [1?} :
The 3-eigenspace is the kernel of

-9 44 3 —124 4
-8 34| — |0 = | -804 .
—-16 8 7 0 —-16 8 4

10-1/2
01 -1/2| .
00 0

Qowo

0
0
3

This matrix row reduces to

1/2
So a basis for the 3-eigenspace is [1?2] :
1

1/2
In short, a basis of eigenvectors is [lf} ) [1{)2], [1?2] .
1
6.2.10 Let A = [} #]. So the characteristic polynomial of A is (z —p)(z —7) —¢* =2* — (p+
r)z + (pr — ¢*). The roots of this polynomial are
p+rE+/(p+7)?2—4(pr—¢? _ptr&E VP2 = 2pr + 12 + 4¢?
2 B 2 ‘
We have p? — 2pr + 72 + 4¢*> = (p — r)? + 4¢*> > 0, so the square root is real.




If (p—7)%+4¢® > 0, then we have two distinct real eigenvalues, so the matrix is diagonalizable.
If (p—r)2+4¢*=0thenp=7rand ¢=0,s0 A = [5’0’ 2}, which is already diagonal.

6.4.2 Let m(x) be the minimal polynomial of 7', so m(T") = 0. Then m(T|w) = m(T)|lw =
Ol = 0. Thus, the minimal polynomial of 7|y must divide m(zx).

6.4.5 Let 1 and Vj be the 0-eigenspace and the 1-eigenspace of A. We'll show that V' = V@ V.
It is easy to see that Vo NV = {0}: If ¥ is in VN V; then A¥ = 00 and AU = 17, so ¥ = 0.
We need to work harder to see that V' =V, + Vi. Let ¥ be any vector in V. Then we have
¥ = (0— A0) + Av. We have A(7 — A0) = A0 — A?0 =0 (since A% = A), so 7 — Av € V. We
similarly have A(Av) = A%0 = Av, so AV € V.

6.4.7 If T is diagonalizable, with A;, Ao, ..., A, the list of distinct eigenvalues, then [[(7T —
A;Id) = 0. The reverse direction is almost proved by Theorem 6 in the book, but we have a few
details to fill in. Let f(x) = [[(x — ;) be a polynomial with distinct roots such that f(7") = 0.
Let m(z) be the minimal polynomial of 7. Then m(x) divides f(x), so m(z) also factors as a
product of distinct linear factors. Then Theorem 6 says that T is diagonalizable.

Problem 1. Let V be a finite dimensional vector space, let A : V' — V be a linear transfor-
mation and suppose that U is a subspace of V' such that AU C U.

(1) Show that there is a basis of V in which A takes the form [[ 9].

(2) Show that there is a basis of U such that the restriction Al given by the matrix P.

(3) Show that there is a linear map A : V/U — V/U defined by A(v + U) = A(V) + U.
(In other words, show that, if v; + U = vy + U, then A(v;) + U = A(vy) + U and this
function V/U — V/U is linear.)

(4) Show that there is a basis for V/U where A is given by the matrix R.

Solution: (1) Take a basis uy, ug, ..., ux of U and complete it to a basis uy, ug, ..., ug, v1,
Vg, ..., Up—j of V. Since AU C U, we have Au; € U for each j; write Au; = ), P;ju;. Then,
in the basis uy, ug, ..., Ug, V1, V2, ..., Un_g, the first k£ columns are of the form [£].

(2) In the basis u; for U which we just discussed, the matrix of A|y is P.

(3) As described in the parenthetical, we first check that, if v; + U = vy + U, then Avy + U =
Avy + U. Indeed, suppose that vy = vy + u for u € U. Then Avy = A(vy + u) = Avy + Au,
and Au € U, so Avy = Av; + U as required. We also want to check that the map is linear.
Indeed, A(vy + vy +U) = Avy + Avg + U = (Avy + U) + (Ave + U) and, for any scalar ¢, we
have A(c(v+U)) = A(cv+U) = A(cv) + U = cAv+ U = ¢(A(v + U))

(4) We take the basis v14+U, vo+U, ..., v, +U for V/U. We have Av; = >, Qnjun+y_. Ri;v;.
Since >, Qnjun € U, we have Av; + U = > Rijv; + U. We rewrite this as A(v; + U) =
> ;i Rij(v; +U). So, in the basis v + U, v+ U, ..., v, + U , the linear transformation A is
given by the matrix R.

Problem 2. For a polynomial f with real coefficients, define D(f) = xf’'+ f”. For each positive
integer n, show that there is a polynomial of degree < n such that D(f) = nf. (Hint: What
does this have to do with eigenvalues?)

Let V be the vector space of polynomials of degree < n. A basis of V is 1, z, 2%, ..., 2™. We
have D(x%) = x(kx*1) + k(k — 1)2*=2 = ka®* + k(k — 1)2*72. So the matrix of D in this basis
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12
0 20

n—2 0 n(n—2)
n—1 0
n
where all the blank entries are 0. This is an upper triangular matrix, so its eigenvalues are the
values on the diagonal, which are 0, 1, 2, ..., n. In particular, n is an eigenvalue, so there is a

polynomial f(x) in this vector space with D f(z) = nf(z).

Problem 3. In this problem, we will discuss the relevance of eigenvalues to oscillations of
mechanical systems. If you hate physics, skip to the differential equation below.

There is a frictionless track with two masses resting on it, each of length m. There is a spring
from the first mass to an anchor at the origin, and a spring between the two masses, each of
which have rest length ¢ and spring constant k. So the masses would be at rest if they were at
positions ¢ and 2/.

Let the positions of the masses at time ¢ be ¢ + z1(t) and 2¢ + x2(t). (So the x’s are the
displacement from the rest positions.) Then the masses obey the differential equations below.

may(t) = —kri(t) +h(za(t) — (1))
maxh(t) = —k(za(t) — x1(1)).

(1) Find all solutions to these equations of the form z;(t) = ay cos(at), z2(t) = as cos(at).
(Hint: What does this have to do with eigenvalues?)

(2) Find a solution to these equations of the form z; = acos(at) + by cos(ft), xo =
as cos(at) + by cos(St) with x1(0) = 0.1 and 25 = —0.2. (In other words, the masses
start at positions ¢ + 0.1 and 2¢ — 0.2.

Solution (1) We want a solution of the form [;28} = [al]cos(at). We have [ig(ﬂ =

—a? g} ] cos(at). We rewrite the right hand sides of the differential equations as

—QkZEl(t> + k’fl'g(t) -2 1 T1(t
kna(t) — k() = FLT A 6]

So, putting the parts together, we want to have
—ma? [3] cos(at) =k [_12 _11} [a1] cos(at).

Cancelling the cos(at) from each side and rearranging a little, we have
ma2 a — a
] =3 4]l

So we want —mTaQ to be an eigenvalue of [_12 fl} and we want [gi] to be an eignvector.

We thus compute the eigenvalues of [’12 4 }: The characteristic polynomial is
det ["12 4] =(@+2)(z+1)—1=2"+3z+ 1.

k(3+/5)

2m

The roots of this polynomial are #, or about —3.618 and —0.382. So we have a =
The following isn’t important but, incidentally, this can be simplified: It equals #\/g , OT

roughly 1.618/ and 0.618 /%



—3+/56
2

We also compute the eigenvectors. The eigenvector of [’12 _11} is the kernel of

—3+v5 115
1 —1-—5 1 )

S

This kernel is spanned by [ _% ] In short, our solutions look like
1

a[_%\/g]cos <\/7k(32;ﬁ>
1

(2) Both sides of the differential equation are linear functions of [

Z‘l(t)
x2 (t)

nation of solutions is another solution. So we look for solutions of the form
a [ _1?/5] oS ( M%ﬁt) +b [ _15\/5] oS <\/ Mz;ﬁt) .
1 1

Plugging in ¢t = 0, we have

], so any linear combi-

o[355] o[ 78] - 2.
The solution to these equations is a = b = —0.1.



