
Solution Set Eight

6.2.3 More precisely, we will show that, if A is upper triangular, then the characteristic poly-
nomial of A is

∏n
i=1(x − Aii). We can prove this by induction on n. Doing row expansion on

the bottom row of A gives

det


x−A11 −A12 −A13 ··· −A1(n−1) A−1n

0 x−A22 −A23 ··· −A2(n−1) A−2n

0 0 x−A33 ··· −A3(n−1) A−3n

. . .
...

...
x−A(n−1)(n−1) −A(n−1)n

x−Ann



= (x− Ann) det


x−A11 −A12 −A13 ··· −A1(n−1)

0 x−A22 −A23 ··· −A2(n−1)

0 0 x−A33 ··· −A3(n−1)
. . .

...
x−A(n−1)(n−1)


= (x− Ann)

n−1∏
i=1

(x− Aii) =
n∏
i=1

(x− Aii)

as desired.

6.2.4 We first compute the characteristic polynomial:

det
[
x+9 −4 −4
8 x−3 −4
16 −8 x−7

]
= x3 − x2 − 5x− 3 = (x+ 1)2(x− 3).

So the eigenvalues are −1 and 3.

We now compute the eigenspaces. The (−1)-eigenspace is the kernel of[ −9 4 4
−8 3 4
−16 8 7

]
+
[
1 0 0
0 1 0
0 0 1

]
=
[ −8 4 4
−8 4 4
−16 8 8

]
.

This matrix row reduces to [
1 −1/2 −1/2
0 0 0
0 0 0

]
.

A basis for the (−1)-eigenspace is thus
[
1/2
1
0

]
,
[
1/2
0
1

]
.

The 3-eigenspace is the kernel of[ −9 4 4
−8 3 4
−16 8 7

]
−
[
3 0 0
0 3 0
0 0 3

]
=
[ −12 4 4
−8 0 4
−16 8 4

]
.

This matrix row reduces to [
1 0 −1/2
0 1 −1/2
0 0 0

]
.

So a basis for the 3-eigenspace is

[
1/2
1/2
1

]
.

In short, a basis of eigenvectors is
[
1/2
1
0

]
,
[
1/2
0
1

]
,

[
1/2
1/2
1

]
.

6.2.10 Let A = [ p qq r ]. So the characteristic polynomial of A is (x− p)(x− r)− q2 = x2 − (p+
r)x+ (pr − q2). The roots of this polynomial are

p+ r ±
√

(p+ r)2 − 4(pr − q2)
2

=
p+ r ±

√
p2 − 2pr + r2 + 4q2

2
.

We have p2 − 2pr + r2 + 4q2 = (p− r)2 + 4q2 ≥ 0, so the square root is real.



If (p− r)2 + 4q2 > 0, then we have two distinct real eigenvalues, so the matrix is diagonalizable.
If (p− r)2 + 4q2 = 0 then p = r and q = 0, so A =

[
p 0
0 p

]
, which is already diagonal.

6.4.2 Let m(x) be the minimal polynomial of T , so m(T ) = 0. Then m(T |W ) = m(T )|W =
0|W = 0. Thus, the minimal polynomial of T |W must divide m(x).

6.4.5 Let V0 and V1 be the 0-eigenspace and the 1-eigenspace of A. We’ll show that V = V0⊕V1.
It is easy to see that V0 ∩ V1 = {~0}: If ~v is in V0 ∩ V1 then A~v = 0~v and A~v = 1~v, so ~v = 0.

We need to work harder to see that V = V0 + V1. Let ~v be any vector in V . Then we have
~v = (~v − A~v) + A~v. We have A(~v − A~v) = A~v − A2~v = 0 (since A2 = A), so ~v − A~v ∈ V0. We
similarly have A(A~v) = A2~v = A~v, so A~v ∈ V1.
6.4.7 If T is diagonalizable, with λ1, λ2, . . . , λr the list of distinct eigenvalues, then

∏
(T −

λjId) = 0. The reverse direction is almost proved by Theorem 6 in the book, but we have a few
details to fill in. Let f(x) =

∏
(x−αi) be a polynomial with distinct roots such that f(T ) = 0.

Let m(x) be the minimal polynomial of T . Then m(x) divides f(x), so m(x) also factors as a
product of distinct linear factors. Then Theorem 6 says that T is diagonalizable.

Problem 1. Let V be a finite dimensional vector space, let A : V → V be a linear transfor-
mation and suppose that U is a subspace of V such that AU ⊆ U .

(1) Show that there is a basis of V in which A takes the form
[
P Q
0 R

]
.

(2) Show that there is a basis of U such that the restriction A|U given by the matrix P .
(3) Show that there is a linear map Ā : V/U −→ V/U defined by Ā(v + U) = A(V ) + U .

(In other words, show that, if v1 + U = v2 + U , then Ā(v1) + U = Ā(v2) + U and this
function V/U −→ V/U is linear.)

(4) Show that there is a basis for V/U where Ā is given by the matrix R.

Solution: (1) Take a basis u1, u2, . . . , uk of U and complete it to a basis u1, u2, . . . , uk, v1,
v2, . . . , vn−k of V . Since AU ⊆ U , we have Auj ∈ U for each j; write Auj =

∑
i Pijui. Then,

in the basis u1, u2, . . . , uk, v1, v2, . . . , vn−k, the first k columns are of the form [ P0 ].

(2) In the basis ui for U which we just discussed, the matrix of A|U is P .

(3) As described in the parenthetical, we first check that, if v1 + U = v2 + U , then Av1 + U =
Av2 + U . Indeed, suppose that v2 = v1 + u for u ∈ U . Then Av2 = A(v1 + u) = Av1 + Au,
and Au ∈ U , so Av2 = Av1 + U as required. We also want to check that the map is linear.
Indeed, A(v1 + v2 + U) = Av1 + Av2 + U = (Av1 + U) + (Av2 + U) and, for any scalar c, we
have A(c(v + U)) = A(cv + U) = A(cv) + U = cAv + U = c(A(v + U))

(4) We take the basis v1+U , v2+U , . . . , vn−k+U for V/U . We have Avj =
∑

hQhjuh+
∑

iRijvi.
Since

∑
hQhjuh ∈ U , we have Avj + U =

∑
iRijvi + U . We rewrite this as Ā(vj + U) =∑

iRij(vi + U). So, in the basis v1 + U , v2 + U , . . . , vn−k + U , the linear transformation Ā is
given by the matrix R.

Problem 2. For a polynomial f with real coefficients, define D(f) = xf ′+f ′′. For each positive
integer n, show that there is a polynomial of degree ≤ n such that D(f) = nf . (Hint: What
does this have to do with eigenvalues?)

Let V be the vector space of polynomials of degree ≤ n. A basis of V is 1, x, x2, . . . , xn. We
have D(xk) = x(kxk−1) + k(k − 1)xk−2 = kxk + k(k − 1)xk−2. So the matrix of D in this basis



is 
0 0 2
1 0 6
2 0 12
3 0 20

. . . . . .

n−2 0 n(n−2)
n−1 0

n


where all the blank entries are 0. This is an upper triangular matrix, so its eigenvalues are the
values on the diagonal, which are 0, 1, 2, . . . , n. In particular, n is an eigenvalue, so there is a
polynomial f(x) in this vector space with Df(x) = nf(x).

Problem 3. In this problem, we will discuss the relevance of eigenvalues to oscillations of
mechanical systems. If you hate physics, skip to the differential equation below.

There is a frictionless track with two masses resting on it, each of length m. There is a spring
from the first mass to an anchor at the origin, and a spring between the two masses, each of
which have rest length ` and spring constant k. So the masses would be at rest if they were at
positions ` and 2`.

Let the positions of the masses at time t be ` + x1(t) and 2` + x2(t). (So the x’s are the
displacement from the rest positions.) Then the masses obey the differential equations below.

mx′′1(t) = −kx1(t) +k(x2(t)− x1(t))
mx′′2(t) = −k(x2(t)− x1(t)).

(1) Find all solutions to these equations of the form x1(t) = a1 cos(αt), x2(t) = a2 cos(αt).
(Hint: What does this have to do with eigenvalues?)

(2) Find a solution to these equations of the form x1 = a1 cos(αt) + b1 cos(βt), x2 =
a2 cos(αt) + b2 cos(βt) with x1(0) = 0.1 and x2 = −0.2. (In other words, the masses
start at positions `+ 0.1 and 2`− 0.2.

Solution (1) We want a solution of the form
[
x1(t)
x2(t)

]
= [ a1a2 ] cos(αt). We have

[
x′′1 (t)

x′′2 (t)

]
=

−α2 [ a1a2 ] cos(αt). We rewrite the right hand sides of the differential equations as

−2kx1(t) + kx2(t)
kx1(t) − kx2(t)

= k
[ −2 1

1 −1
] [ x1(t)

x2(t)

]
.

So, putting the parts together, we want to have

−mα2 [ a1a2 ] cos(αt) = k
[ −2 1

1 −1
]

[ a1a2 ] cos(αt).

Cancelling the cos(αt) from each side and rearranging a little, we have

−mα2

k
[ a1a2 ] =

[ −2 1
1 −1

]
[ a1a2 ] .

So we want −mα2

k
to be an eigenvalue of

[ −2 1
1 −1

]
and we want [ a1a2 ] to be an eignvector.

We thus compute the eigenvalues of
[ −2 1

1 −1
]
: The characteristic polynomial is

det
[
x+2 −1
−1 x+1

]
= (x+ 2)(x+ 1)− 1 = x2 + 3x+ 1.

The roots of this polynomial are −3±
√
5

2
, or about −3.618 and −0.382. So we have α =

√
k(3±

√
5)

2m

The following isn’t important but, incidentally, this can be simplified: It equals ±1+
√
5

2

√
k
m

, or

roughly 1.618
√

k
m

and 0.618
√

k
m

.



We also compute the eigenvectors. The −3±
√
5

2
eigenvector of

[ −2 1
1 −1

]
is the kernel of[

−2−−3±
√
5

2
1

1 −1−−3±
√
5

2

]
=

[
−1∓

√
5

2
1

1
1∓
√
5

2

]
This kernel is spanned by

[
−1±

√
5

2
1

]
. In short, our solutions look like

a
[
−1±

√
5

2
1

]
cos

(√
k(3±

√
5)

2m
t

)
.

(2) Both sides of the differential equation are linear functions of
[
x1(t)
x2(t)

]
, so any linear combi-

nation of solutions is another solution. So we look for solutions of the form

a
[
−1+

√
5

2
1

]
cos

(√
k(3+

√
5)

2m
t

)
+ b
[
−1−

√
5

2
1

]
cos

(√
k(3−

√
5)

2m
t

)
.

Plugging in t = 0, we have

a
[
−1+

√
5

2
1

]
+ b
[
−1−

√
5

2
1

]
= [ 0.1

−0.2 ] .

The solution to these equations is a = b = −0.1.


