Solution Set Nine

6.6.2 By assumption, every vector in V can be written in the form $\vec{w}_1 + \vec{w}_2 + \cdots + \vec{w}_k$ for $\vec{w}_i \in W_i$, so what we want to show is that there is only one such expression. There are many ways to do this, but here is a particularly nice way: Let $W_1 \oplus W_2 \oplus \cdots \oplus W_k$ be the abstract direct sum of the W_i . So $\dim (W_1 \oplus W_2 \oplus \cdots \oplus W_k) = \sum \dim W_i$. We have a map $W_1 \oplus W_2 \oplus \cdots \oplus W_k \longrightarrow V$ by $(\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_k) \mapsto$ $\vec{w}_1 + \vec{w}_2 + \cdots + \vec{w}_k$. Our assumption that $V = W_1 + W_2 + \cdots + W_k$ means that this map is surjective. But both vector spaces have the same dimension, so this shows it is also injective.

6.6.4 False. We'll take our field to be R. The map $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ is a projection onto $\mathbb{R} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and the map $\begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ is a projection onto $\mathbb{R}[\frac{1}{1}]$. But $[\frac{1}{0}0] + [\frac{1}{2} \frac{1}{2} \frac{1}{2}]$ $\left[\frac{1}{2}\frac{1}{2}\right] = \left[\frac{3}{2}\frac{1}{2}\right]$ $\begin{bmatrix}3/2 & 1/2 \\1/2 & 1/2\end{bmatrix}$ is not a projection. Indeed, we check that $\int 3/2 \frac{1}{2}$ $\left[\frac{3}{2}\frac{1}{2}\right]^2 = \left[\frac{5}{2}\frac{1}{1}\right]$ $\begin{pmatrix} 2 & 1 \\ 1 & 1/2 \end{pmatrix} \neq \begin{bmatrix} 3/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix}$ $\frac{3}{2} \frac{1}{2} \frac{1}{2}$.

6.6.6 True. Choosing a basis where our operator is diagonal, we can assume E is of the form

Then $E^2 = E$ as desired.

6.7.1 Suppose first that $ETE = TE$ and let $\vec{y} \in \text{Im}(E)$, meaning that $\vec{y} = E\vec{x}$ for some \vec{x} . Then $T\vec{y} = TE\vec{v} = ETE\vec{x} = E (TE\vec{x}),$ so $T\vec{y} \in \text{Im}(E)$ as desired.

Conversely, suppose that T maps Im(E) to itself. For any vector \vec{x} , we then have $TE\vec{x} \in \text{Im}(E)$. But E maps every vector in Im(E) to itself, so we deduce that $E(TE\vec{x}) = TE\vec{x}$, as desired.

Now, suppose that $ET = TE$. This implies that $ETE = TE^2 = TE$, so we conclude that T maps Im(E) to itself as desired. We must check that T also maps Ker(E) to itself. Indeed, let $E\vec{z} = \vec{0}$. Then $E(T\vec{z}) = TE\vec{z} = T\vec{0} = \vec{0}$, showing that $T\vec{z}$ is in Ker(E) as desired.

Finally, suppose that T maps $\text{Im}(E)$ and $\text{Ker}(E)$ to themselves. Since $V = \text{Im}(E) \oplus \text{Ker}(E)$, every vector in V can be written as $\vec{y} + \vec{z}$ for $\vec{y} \in \text{Im}(E)$ and $\vec{z} \in \text{Ker}(E)$. By the definition of $\text{Im}(E)$, we rewrite this as $\vec{v} = E\vec{x} + \vec{z}$. We must check that $ET(E\vec{x} + \vec{z}) = TE(E\vec{x} + \vec{z})$. On the left hand side, we have $ET(E\vec{x} + \vec{z}) = ETE\vec{x} + ET\vec{z}$. By our assumption on T, the vector TE \vec{x} is in Im(E), so $ETE\vec{x} = TE\vec{x}$. Also by our assumption on T, the vector $T\vec{z}$ is in Ker(E), so $ET\vec{z} = \vec{0}$. We conclude that the left hand side is T E \vec{x} . On the right hand side, we have $TE(E\vec{x} + \vec{z}) = TE^{2}\vec{x} + \vec{0} = TE\vec{x}$. So both sides are T E \vec{x} and we are done.

6.7.2 (a) We check that $\begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

(b) Any space complementary to $\mathbb{R} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ must be of the form $\mathbb{R} \begin{bmatrix} x \\ 1 \end{bmatrix}$ for some x. But then $\begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix} = \begin{bmatrix} 2x+1 \\ 2 \end{bmatrix}$. If $\mathbb{R} \left[\begin{array}{c} x \\ 1 \end{array} \right]$ were invariant, then the vector $\left[\begin{array}{c} 2x+1 \\ 2 \end{array} \right]$ would have to be in $\mathbb{R} \left[\begin{array}{c} x \\ 1 \end{array} \right]$. But det $\left[\begin{array}{c} 2x+1 & x \\ 2 & 1 \end{array} \right] = 1 \neq 0$, so there is no x for which $\left[\frac{2x+1}{2}\right]$ is a multiple of $\left[\frac{x}{1}\right]$.

6.8.1 The characteristic polynomial of T is $x^3 - 2x^2 + x - 2 = (x - 2)(x^2 + 1)$. We take $p_1(x) = x - 2$ and $p_2(x) = x^2 + 1$. We compute bases for $p_1(T)$ and $p_2(T)$. We have

$$
p_1(T) = T - 2\text{Id}_3 = \begin{bmatrix} 4 & -3 & -2 \\ 4 & -3 & -2 \\ 10 & -5 & -5 \end{bmatrix} = \mathbb{R} \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}.
$$

$$
p_2(T) = T^2 + \text{Id}_3 = \begin{bmatrix} 5 & -5 & 0 \\ 0 & 0 & 0 \\ 10 & -10 & 0 \end{bmatrix} = \mathbb{R} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} + \mathbb{R} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}
$$

.

6.8.9 One example is

$$
\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \text{ and } \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.
$$

Both of these matrices have minimal polynomial x^2 .