
Solution Set Nine

6.6.2 By assumption, every vector in V can be written in the form ~w1 + ~w2 + · · · + ~wk for ~wi ∈ Wi,
so what we want to show is that there is only one such expression. There are many ways to do this,
but here is a particularly nice way: Let W1 ⊕W2 ⊕ · · · ⊕Wk be the abstract direct sum of the Wi. So
dim (W1 ⊕W2 ⊕ · · · ⊕Wk) =

∑
dimWi. We have a map W1⊕W2⊕· · ·⊕Wk −→ V by (~w1, ~w2, . . . , ~wk) 7→

~w1 + ~w2 + · · ·+ ~wk. Our assumption that V = W1 +W2 + · · ·+Wk means that this map is surjective. But
both vector spaces have the same dimension, so this shows it is also injective.

6.6.4 False. We’ll take our field to be R. The map [ 1 0
0 0 ] is a projection onto R [ 10 ] and the map

[
1/2 1/2
1/2 1/2

]
is a projection onto R [ 11 ]. But [ 1 0

0 0 ] +
[
1/2 1/2
1/2 1/2

]
=
[
3/2 1/2
1/2 1/2

]
is not a projection. Indeed, we check that[

3/2 1/2
1/2 1/2

]2
=
[
5/2 1
1 1/2

]
6=
[
3/2 1/2
1/2 1/2

]
.

6.6.6 True. Choosing a basis where our operator is diagonal, we can assume E is of the form
1
1

...
1
0
0

...
0

 .

Then E2 = E as desired.

6.7.1 Suppose first that ETE = TE and let ~y ∈ Im(E), meaning that ~y = E~x for some ~x. Then
T~y = TE~v = ETE~x = E (TE~x), so T~y ∈ Im(E) as desired.

Conversely, suppose that T maps Im(E) to itself. For any vector ~x, we then have TE~x ∈ Im(E). But E
maps every vector in Im(E) to itself, so we deduce that E(TE~x) = TE~x, as desired.

Now, suppose that ET = TE. This implies that ETE = TE2 = TE, so we conclude that T maps
Im(E) to itself as desired. We must check that T also maps Ker(E) to itself. Indeed, let E~z = ~0. Then

E (T~z) = TE~z = T~0 = ~0,. showing that T~z is in Ker(E) as desired.

Finally, suppose that T maps Im(E) and Ker(E) to themselves. Since V = Im(E)⊕Ker(E), every vector
in V can be written as ~y + ~z for ~y ∈ Im(E) and ~z ∈ Ker(E). By the definition of Im(E), we rewrite
this as ~v = E~x + ~z. We must check that ET (E~x + ~z) = TE (E~x + ~z). On the left hand side, we have
ET (E~x + ~z) = ETE~x + ET~z. By our assumption on T , the vector TE~x is in Im(E), so ETE~x = TE~x.

Also by our assumption on T , the vector T~z is in Ker(E), so ET~z = ~0. We conclude that the left hand

side is TE~x. On the right hand side, we have TE (E~x + ~z) = TE2~x + ~0 = TE~x. So both sides are TE~x
and we are done.

6.7.2 (a) We check that [ 2 1
0 2 ] [ 10 ] = [ 20 ] = 2 [ 10 ].

(b) Any space complementary to R [ 10 ] must be of the form R [ x1 ] for some x. But then [ 2 1
0 2 ] [ x1 ] = [ 2x+1

2 ].
If R [ x1 ] were invariant, then the vector [ 2x+1

2 ] would have to be in R [ x1 ]. But det [ 2x+1 x
2 1 ] = 1 6= 0, so there

is no x for which [ 2x+1
2 ] is a multiple of [ x1 ].

6.8.1 The characteristic polynomial of T is x3− 2x2 + x− 2 = (x− 2)(x2 + 1). We take p1(x) = x− 2 and
p2(x) = x2 + 1. We compute bases for p1(T ) and p2(T ). We have

p1(T ) = T − 2Id3 =
[

4 −3 −2
4 −3 −2
10 −5 −5

]
= R

[
1
0
2

]
.

p2(T ) = T 2 + Id3 =
[

5 −5 0
0 0 0
10 −10 0

]
= R

[
0
0
1

]
+ R

[
1
1
0

]
.

6.8.9 One example is [
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 0

]
and

[
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

]
.

Both of these matrices have minimal polynomial x2.


