Please see the course website for homework policy.

Problem 1 Let G be a graph with n vertices and e edges, so that every edge lies in m spanning trees. Consider the graph as made of identical resistors with resistance R. What is the effective resistance between two adjacent vertices?

Problem 2 Let n be a positive integer. Construct a binary string in a greedy manner as follows: Start with n-1 copies of 0. Add bits to the end as follows: Add 1 unless this would cause the same n-bit substring to occur twice. If we are forbidden to add 1, then add 0 if this will not cause an n-bit substring to reoccur. If both 1 and 0 would cause an n-bit substring to reoccur, then stop. For n=3, this produces

0011101000.

In this problem, we will show that this procedure ends with n-1 zeroes and that gluing those zeroes to the initial zeroes produces a de Bruijn cycle.

Let D_n be the directed graph whose vertices are binary strings of length n-1 and where there is an edge from $b_1b_2\cdots b_{n-1}$ to $b_2b_3\cdots b_{n-1}b_n$. (This is the graph we used in class to prove de Bruijn sequences exist.) Let T be the subgraph consisting of the edges $b_1b_2\cdots b_{n-1} \longrightarrow b_2\cdots b_{n-1}0$ for every binary string $b_1b_2\cdots b_{n-1}$ other than $00\cdots 0$.

- (a) For n = 3, draw the graph D_3 and the subgraph T. You should see that T is a rooted subtree of D_3 ; construct the corresponding de Bruijn cycle.
 - (b) Prove in general that T is a rooted subtree of D_n .
- (c) Prove that the Eulerian walk of D_n corresponding to T (by the BEST algorithm) gives the de Bruijn sequence constructed by the greedy procedure above.

Problem 3 Let G be a directed graph with n vertices v_1, v_2, \ldots, v_n arranged around a circle. G has 4n edges: For each vertex, there are two edges to its clockwise neighbor and two to its counter-clockwise neighbor.

- (a) Find the number of rooted spanning trees of G. (Just thinking about the problem is probably easier than using the matrix-tree theorem.)
 - (b) Find the number of Eulerian walks in G.

Problem 4 Let n be a positive integer. Let X_1, X_2, \ldots, X_n be subsets of the plane \mathbb{R}^2 . For any subset I of $\{1, 2, \ldots, n\}$, let $Y_I = (\bigcap_{i \in I} X_i) \cap (\bigcap_{j \notin I} X_j^C)$, where X_j^C is $\mathbb{R}^2 \setminus X_j$. We will define X_1, \ldots, X_n to be a generalized Venn diagram if all the X_i 's are convex and all the Y_I 's are nonempty. Show that there exist generalized Veen diagrams for any n.

Hint: The image above shows one of the sets X_i for n=3; the dashed lines are an aid to visualization.

