PROBLEM SET 6 – DUE OCTOBER 29ND

Please see the course website for homework policy.

Problem 1 Let G be a graph and let L(G) be the Laplacian matrix of G. Let $\lambda_2(G)$ be the second smallest eigenvalue of L(G). (The smallest eigenvalue is 0, corresponding to the all 1 vector.) Hint (ROT13): Guvf ceboyrz vf nobhg gur Enyrvtu dhbgvrag.

(a) Let G' be a graph formed by adding an extra edge to G. Show that $\lambda_2(G') \ge \lambda_2(G)$.

(b) I am no longer sure this is true, though I can't break it. Please let me know if you find a proof. Let v be a vertex of G, with neighbors u_1, u_2, \ldots, u_k . Choose i with $1 \le i \le k$ and make a new graph G' as follows: replace v by two vertices x and y, where x is joined to u_1, u_2, \ldots, u_i and y is joined to $u_{i+1}, u_{i+2}, \ldots, u_k$. Show that $\lambda_2(G') \le \lambda_2(G)$.

Problem 2 Let *H* be a bipartite graph and let A(H) be its adjacency matrix. Show that, if λ is an eigenvalue of *H*, then $-\lambda$ is also an eigenvalue of *H*.

Problem 3 Let G be a d-regular graph on n vertices. Let A(G) be the adjacency matrix of G, with eigenvalues $d = \lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$.

(a) Show that
$$\lambda_1^2 + \lambda_2^2 + \dots + \lambda_n^2 = dn$$
.

(b) Show that $\max(|\lambda_2|, |\lambda_n|) \ge \sqrt{\frac{dn-d^2}{n-1}}$.

(c) Fix d and fix $\epsilon > 0$. Show that, for n sufficiently large, $\max(|\lambda_2|, |\lambda_n|)$ is $> \sqrt{d} - \epsilon$.

Problem 4.(a) Let G be the *n*-cycle and let L(G) be the Laplacian matrix of G. Show that the eigenvalues of L(G) are $2 - 2\cos(2\pi j/n)$, for $0 \le j < n$.

(b) Let H be the path of length n and let L(H) be the Laplacian matrix of H. Let G be the 2n-cycle with Laplacian matrix L(G). Show that every eigenvalue of L(H) is also an eigenvalue of L(G). More specifically, show that the eigenvalues of H are $2 - 2\cos(2\pi j/(2n))$, for $0 \le j < n$.

(c) Let S be the tree with n+1 vertices, one of which borders all the others. Find the eigenvalues of L(S).