
Solution Set 1
Problem 1 Let G be a connected graph with equally many vertices and edges. Show that G has

exactly one cycle.

Let G have n vertices and n edges. Since G is a connected graph, it has a spanning tree T with
n vertices and n − 1 edges. Let e be the edge not in T , with its endpoints u and v. There is a
unique path γ between u and v in T (since T is a tree). The union of e and γ is a cycle.

Suppose that there is some other cycle δ. If δ does not contain e, then it is contained in T ,
contradicting that T has no cycles. If δ does contain e, write it as the union of e and a path ε in
T . Then ε is a path from u to v. But γ is the only path from u to v in T .

Problem 2 Let G be a directed graph on a finite vertex set V .
(a) Suppose that every vertex of G has out-degree 1. Show that G has a directed cycle.

Start at a vertex w0. Let w1 be a vertex with an edge w0 → w1. Let w2 be a vertex with an
edge w1 → w2. Continue in this manner, letting wi+1 be a vertex with an edge wi → wi+1. Since
V is finite, sooner or later the same vertex will occur twice in this sequence. So there is a path
wi → wi+1 → · · · → wj for some i < j. This is a directed cycle.

(b) Suppose that v ∈ V is a vertex of out-degree 0 and every vertex other than v has out-degree
1. Show that the following are equivalent:

(i) G, considered as an undirected graph, is connected
(ii) G, considered as an undirected graph, is a tree
(iii) G, considered as an undirected graph, has no cycles
(iv) G, considered as a directed graph, has no directed cycles

Let V have n vertices. Every edge points out of one vertex, so the number of edges is
∑

v∈V outdegree(v) =
1 + 1 + · · ·+ 1 + 0 = n− 1. Therefore, (i), (ii) and (iii) are equivalent. Also, it is obvious that (iii)
implies (iv). It remains to show that (iv) implies one of (i), (ii) and (iii); we will show that (iv)
implies (i).

Assume (iv). Consider any vertex w0 in V and construct w1, w2, . . . as above for as long as you
can. Since G has no directed cycles, the process must stop at some wi, which must be v. Then we
have a directed path w0 → w1 → w2 → · · · → wi = v. We have shown that there is a path from an
arbitrary vertex to v, so G is connected.

In fact, as came up in class during the proof of the matrix-tree theorem, these conditions are
equivalent to G being a rooted tree.

Problem 3 Let T be a tree all of whose vertices have degree either 1 or 3. Such a tree is called
trivalent and often occur in evolutionary biology, describing how various species have branched apart
from each other.

(a) If T has n leaves, show that it has n− 2 vertices of degree 3.

Let m be the number of vertices of degree 3. So there are m + n vertices in general, and
thus m + n − 1 edges. The sum of the degrees of the vertices is twice the number of edges, so
n+ 3m = 2((m+ n)− 1). Rearranging, m = n− 2.

(b) Let T be a trivalent tree with n ≥ 4. Show that there is some internal vertex which is adjacent
to two leaves.

There are many ways to prove this, here is one. Let U be the subgraph on T on the internal
vertices. Then U has no cycles, since T has no cycles, and U is connected, since any two internal
vertices of T can be joined by a path which doesn’t use a leaf. Finally, since n ≥ 3, we see that U
has at least one vertex and is, in particular, nonempty. Thus, U is a tree. Moreover, since n ≥ 4,



U has at least two vertices and therefore has a leaf `. The vertex ` must have bordered two leaves
of T .

Problem 4 Let T be a tree.
(a) Show that it is possible to color the vertices of T black and white so that neighboring vertices

have opposite colors.

We work by induction on the number of vertices of T . If T is a single vertex, then it can be
colored (either black or white). If T has more than one vertex, then it has a leaf `; let t be the
vertex neighboring `. The graph formed by deleting ` from T is again a tree so, inductively, it can
be bipartitely colored. If t is colored black, then color ` white, and vice versa.

Let b and w be the numbers of black and white vertices.
(b) If b ≥ w, show that T has a black leaf.

We prove the contrapositive: If all the leaves of T are white, then w > b. Suppose, therefore,
that all the leaves of T are white. Let `1 be the number of leaves of T . Let T2 be the tree that
results by deleting all the leaves of T , so all the leaves of T2 are black. Let `2 be the number of
leaves of T2 and let T3 be the tree that results from deleting all the leaves of T2. By induction, T3
has more white vertices than black, so we are done if we show that `1 ≥ `2. Indeed, every vertex
of T2 borders at least one leaf of T , and every leaf of T borders precisely one leaf of T2, so there is
a surjection from leaves of T to leaves of T2. (This is only one of many ways to prove this.)

(c) Let ` be the number of leaves of T . Show that |b− w| < ` (unless T is a single vertex).

Let `b be the number of black leaves and `w the number of white leaves. If we delete all
the black leaves then the resulting tree only has white leaves so, by the contrapositive of part
(b), w − (b − `b) > 0. Similarly, b − (w − `w) > 0. So `b > b − w > −`w and we see that
|b− w| < max(`b, `w) ≤ `.

Attribution: This is a lemma from my first paper, Every tree is 3-equitable, with Zsuzsanna
Szaniszlo, Discrete Math (2000). I list it to point out that lemmas in research papers are often no
harder than problems on problem sets.

Problem 5 Consider trivalent trees (defined in Problem 2) whose leaves are numbered 1, 2, . . . ,
n. We consider two such trees T and T ′ to be the same if there is an isomorphism T ∼= T ′ preserving
the labels of the leaves. Below, we depict the three trees for n = 4.
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(a) How many such trees are there for n = 5, 6 and 7? (Don’t write them out!)

The numbers are 15, 105 and 945. Probably the easiest way to do this count is to first list the
trees up to isomorphism: There are 1, 2 and 2 such trees respectively, and they contribute 15,
90 + 15 and 630 + 315 trees respectively.

(b) Conjecture a formula for the number of such trees with n leaves.

We are looking at the sequence 1, 3, 15, 105, 945. These numbers all have very small prime
factors, so some sort of multiplicative formula seems reasonable. In fact, each number divides the
previous number: We have 3/1 = 3, 15/3 = 5, 105/15 = 7 and 945/105 = 9. This suggests that
the number of trivalent trees with n leaves is 1× 3× 5× 7× · · · × (2n− 5).



Another resource you could (and may) use is Sloane’s online encyclopedia of integer sequences:
http://www.oeis.org . There is one sequence in the encyclopedia containing 1, 3, 15, 105, 945;
you can see it at http://oeis.org/A001147 .

(c) Prove your guess.

Let Tn be the set of trivalent trees with leaves labeled by n. We will create a map Tn → Tn−1 so
that each tree in Tn−1 is the image of 2n− 5 trees; the formula will then follow by induction.

Here is the map. Let T be a trivalent tree with leaves {1, 2, . . . , n} and n ≥ 1. Let u be the
vertex of T bordering n. Assuming n ≥ 3, u will be an internal vertex; let its other neighbors be x
and y. Delete the leaf n and the vertex u, then join x and y by a new edge. Call the resulting tree
T ′, so T ′ is a trivalent tree with n− 1 leaves.

Given a tree T ′, how many trees can it come from? For each edge (x, y) of T ′, we can insert a
vertex u in the middle of it and connect it to a new leaf labeled n; this produces a tree T which
maps to T ′. So the number of trees mapping to T ′ is the number of edges of T ′. Since T ′ has n− 1
leaves and (n− 1)− 2 internal vertices, it has (n− 1) + (n− 3)− 1 = 2n− 5 edges. So, for each T ′

in Tn−1, there are 2n− 5 trees T mapping to T ′, as desired.

Problem 6 Consider a (2n + 1) × (2n + 1) checkerboard.
Place 2n2 + 2n dominos on the checker board, leaving one
corner uncovered. Show that it is possible to slide the dominos
in order to move the hole to any position whose x and y
coordinates have the same parity as the initial corner.

We begin by building a directed graph G. The vertices of this graph are the positions whose
x and y coordinates have the same parity as the initial corner. If (x, y) is a vertex of G other
than the corner, then let there is a domino covering (x, y). Let the other square of that domino be
(x, y) + (δ, ε), where (δ, ε) is one of (1, 0), (0, 1), (−1, 0) or (0,−1). Then, in the graph G, we draw
an edge from (x, y) to (x, y) + 2(δ, ε). So every vertex of G has outdegree 1 except the initial hole,
which has outdegree 0. (In other words, this is a graph of the sort you studied in problem 2(b).)
In the above figure, the graph G is the bold purple lines. (The purpose of the dashed lines will be
explained later.)

The crucial claim is that this graph has no directed cycles. The figure
to the left shows an arrangement of dominoes which would give an
oriented cycle. However, notice that this arrangement cannot be
completed to a full tiling because the region inside the cycle has 5
squares. We will show that this is the general situation. Claim:
Any oriented cycle encloses an odd number of squares, and therefore
cannot be complete to a tiling of the full board.

So, suppose that we have an oriented cycle γ; we want to show that γ encircles an odd number
of squares of the original checker board. One can prove this in a tedious way by induction on the
length of γ, but let’s take a slick route. Take the area inside γ and cut it up into 2 × 2 squares,
as shown by the dashed lines. Let H be the graph made up of γ and the dashed lines. Let F be
the number of 2× 2 squares in H; let E be the number of edges of H and let V be the number of
vertices of H. (In the example, F = 3, E = 10 and V = 8.) Euler’s relation gives V − E + F = 1.
(We will discuss Euler’s relation when we cover planar graphs.) Let the length of the cycle γ be n
(so, in this case, n = 8.



The checkerboard squares inside γ whose coordinates are of the same parity as the hole correspond
to the vertices of H not on γ; so there are V −n of them. The checkerboard squares inside γ whose
coordinates are both of the opposite parity as the whole correspond to the 2× 2 faces of H; there
are F of them. And the checkerboard squares inside γ which have one coordinate of one parity and
one of the other correspond to the dashed edges of H, which there are E − n of. So, in total, the
number of squares inside γ is

(V − n) + F + (E − n) = V + F + E − 2n ≡ V − E + F = 1 mod 2.

This complete the proof of the claim.
So, for any tiling of the complete checker board, the graph G cannot have an oriented cycle.

Start at any vertex v0 of G and follow the directed edges. Since there is no directed cycle, you
must eventually reach the hole. So there is a directed path v0 → v1 → v2 → · · · → vk where vk is
the hole. Slide the domino on vk−1 to vk; slide the domino on vk−2 to vk−1 and so forth, until you
have moved the hole to v0.

Attribution: This problem appeared on the 1997 All-Russian Mathematical Olympiad, credited
to A. Shapovalov. It is also a special case of a relation between matchings and spanning trees in
planar graphs which we may discuss later.


