
Solution Set 2

Problem 1 Let Kp,q be the graph with vertices v1, v2, . . . , vp, w1, w2, . . . , wq and with an edge
from vi to wj for each i and j. (So there are pq edges in all.) Let Lp,q be the Laplacian matrix of
Kp,q.

(a) Compute the characteristic polynomial of Lp,q for enough values of (p, q) to make a guess as
to the general answer.

With the help of a computer algebra system, you should quickly come up with the guess

x(x+ q)p−1(x+ p)q−1(x+ p+ q).

(b) Prove your guess.
We need to find enough eigenvectors. The all ones vector accounts for the 0 eigenvalue.
For any vi and vj , let ~x(i, j) be the vector which is 1 on vi and −1 on vj . Then L~x(i, j) = q~x(i, j).

The ~x(i, j) span a (p− 1)-dimensional eigenspace with eigenvalue q. Similarly, for any wi and wj ,
let ~y(i, j) be the vector which is 1 on wi and −1 on wj ; we have L~y(i, j) = p~y(i, j). The ~y’s span a
(q− 1)-dimensional subspace for eigenvalue p. We are missing one eigenvalue; call it λ. The easiest
way to find λ is probably to note that Tr(L) = 2pq (the sum of the degrees of the vertices, so twice
the number of edges), so p(q − 1) + q(p − 1) + λ = 2pq. We deduce that λ = p + q. The actual
eigenvector is (q, q, . . . , q,−p,−p, . . . ,−p).

In summary, we have confirmed the formula det(x+ L) = x(x+ q)p−1(x+ p)q−1(x+ p+ q).
(c) How many spanning trees does Kp,q have?
Using the formula from class, the number of spanning trees is 1

p+q q
p−1pq−1(p+ 1) = qp−1pq−1.

Problem 2 Let Gd be the graph which has 2d vertices, u1, . . . , ud, v1, . . . , vd and where every
vertex is connected to every other vertex except that there is no edge from ui to vi.

Let S be the 2d× 2d matrix with a 1 in positions (i, i+ d) and (i+ d, i), and zeroes everywhere
else. Let J be the 2d× 2d matrix whose every entry is a 1.

(a) Express the Laplacian matrix of Gd in terms of S, J and Id.
We have L = (2d− 1)Id− J + S.
(b) Check that S2 = Id, SJ = JS = J and J2 = 2dJ . What are the possible eigenvalues of S

and J?
The equations are easy to check. From the equation S2 = Id, the eigenvalues of S are ±1. From

the equation J2 = 2dJ , or from computations in class, the eigenvalues of J are 0 and 2d.
(c) Show that S and J can be simultaneously diagonalized. Describe the corresponding eigenspaces

and eigenvalues.
Let V+ and V− be the eigenspaces of S. Since SJ = JS, we see that JV± = V±. Define inner

products on V+ and V− by restricting the standard inner product from R2d. Since J is symmetric,
J restricted to each of these subspaces is self-adjoint and, thus, J |V+ and J |V− are diagonalizable.

Explicitly, we have the following eigenspaces: The span of (1, 1, . . . , 1), with eigenvalues (2d, 1)
for (J, S). The d dimensional space of functions whose value at ui is negative the value at vi, with
eigenvalues (0,−1) for (J, S). And the (d− 1)-dimensional space of functions which take the same
value at ui and vi, and sum to 0, with eigenvalues (0, 1).

(d) How many spanning trees does Gd have?
On the above listed subspaces, L acts by (2d − 1) − (2d) + 1 = 0, (2d − 1) − 0 + (−1) and

(2d− 1)− 0 + 1 respectively. So the characteristic polynomial is

x(x+ 2d− 2)d(x+ 2d)d−1.

There are 1
2d(2d− 2)d(2d)d−1 = (2d− 2)d(2d)d−2 spanning trees.



Problem 3 Let Gn and Hn be the graphs shown on the problem set. Let τ(G) denote the number
of spanning trees of the graph G. Prove that

τ(Gn) = τ(Gn−1) + 2τ(Hn−1)
τ(Hn) = τ(Gn−1) + 3τ(Hn−1)
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In the graph Gn, consider the vertices u, v and w marked above. Any spanning tree must use at
least 1 of the edges uv and vw. Suppose the tree only uses one of these edges. Delete that edge,
and you obtain a spanning tree of Hn−1.
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On the other hand, suppose that we use both uv and vw. Deleting these edges gives a spanning

forest of Hn−1 where r and s are in separate components. Contracting the edge rs gives a spanning
tree of Gn−1. Altogether, we have τ(Gn) = 2τ(Hn−1) + τ(Gn−1).

The other equation can be proved similarly: The 3τ(Hn−1) term corresponds to using two of the
edges qr, rs and st; the τ(Gn−1) term corresponds to using all three.

Problem 4 Let Tn be the number of trees on vertex set {1, 2, . . . , n}. (We will prove in class
that Tn = nn−2, but it is easiest to do this problem without using that fact.)

Prove that

2(n− 1)Tn =
n−1∑
k=1

(
n

k

)
kTk(n− k)Tn−k.

We will show that both sides of the equation count triples (T, u, v) where T is a tree on the
vertex set {1, 2, . . . , n} and u and v are adjacent vertices. The left side is easy: Tn is the ways to
choose the tree T ; the term (n− 1) is the number of ways to choose the edge joining u and v; and
the factor of 2 counts choosing which is u and which is v.

On the right hand side, removing the edge (u, v) divides T into two trees U and V , where u
contains U and v contains V . The k-th term on the right hand side is the number of triples (T, u, v)
where U has k vertices and V has n − k. Namely, we first choose which vertices to put into U
and which to put into V ; this can be done in

(
n
k

)
ways. We then choose a tree structure on the

k-element set, in Tk ways, and on the n − k element set in Tn−k ways. Finally, we choose which
vertex of each tree to connect to the other tree; giving k(n− k) choices.


