
Solution Set 4

Problem 1 Let D be a directed graph. Let W be a walk (not an Eulerian walk, just any walk)
in the graph. Let v0 be the last vertex of W . Let T be subgraph of D where u→ v is in T if u→ v
is the last edge used to depart from u.

(a) Show that T has at most one cycle and, if it has a cycle, that v0 is on this cycle.
Note that every vertex of T has out-degree ≤ 1, so any cycle must be a directed cycle.
Let v1 → v2 → · · · → vr → v1 be a cycle of T . Suppose, for the sake of contradiction, that v0

is not on this cycle. Among v1, v2, . . . , vr, let vi be the vertex our walk visited most recently.
But then the last time we visited vi we left it to go to vi+1, so vi+1 was visited later than vi, a
contradiction.

(b) Suppose that G contains an edge v0 → v1. Let W ′ be the walk obtained by concatenating
v0 → v1 to W and let T ′ be the graph for W ′. Describe T ′ in terms of W and v0 → v1.

If T has an edge from v0 to some vertex other than v1, delete that edge. Then add an edge from
v0 to v1.

(c) Let τ(D, v) be the number of spanning trees of D rooted at v. Let σ(D, v) be the number
of connected spanning subgraphs of D with one directed cycle γ, with γ passing through v. Give a
simple relation between τ(D, v) and σ(D, v).

We have σ(D, v) = outdeg(v)τ(D, v). Map the set of graphs with one cycle through v to the set
of trees rooted at v by deleting the edge out of v. I claim every fiber of this map has size outdeg(v).
Specifically, given a tree Γ rooted at v, we can expand it to a graph with one cycle through v by
adding any one of the outdeg(v) edges out of v.

Problem 2 Consider the following problem: Given a graphG, with n vertices, determine whether
or not it is bipartite. Describe an algorithm to do this and work through a basic estimate of how
many steps this will take. The exact answer will depend on your algorithm and on precisely how
you model computation. But if your answer is worse than polynomial in n, you are definitely doing
something wrong.

I’ll assume our graph is given to us as an adjacency matrix. Suppose there are n vertices and
e edges. This solution assumes that following links from one vertex to another takes constant
time. In parentheses, I’ll write out a second solution which actually thinks from a Turing machine
perspective, although there isn’t a lot of benefit in doing this. I am also not trying to be as efficient
as possible here, just to show how an analysis can be done.

We’ll have an array of length n which keeps track of whether each vertex is white, black, or not
yet colored. (In terms of Turing machines, imagine n dedicated places on the tape, each with one
of 3 symbols.)

1. Start out by marking all the vertices as uncolored. Time: linear in n.
2. Go through the list of vertices looking for a vertex which is colored but has an uncolored

neighbor. This involves at most n2 checks of whether u is colored, v is uncolored, and there is
an edge from u to v. (Longer on a Turing machine because, for each check, you need to travel a
distance of roughly n2 to get between the region of the tape where the adjacency matrix is and
the region where the coloring is. So n4 on a Turing machine, done in the obvious way.) If all the
vertices are colored, output BIPARTITE.

3. If there is no such vertex, choose an uncolored vertex and color it. Time n to find an uncolored
vertex. Return to 2.

4. If u is colored and v is uncolored, color v opposite to u. Then check whether v is compatible
with all its other neighbors. This is at most deg(v) tests. In many models of computation, this
test takes constant time. (On a Turing machine, each check requires us to travel distance n2 to get
to the relevant part of the adjacency matrix. Actually doing it in this time on a Turing machine is
tricky. I think the following works: Put a temporary marker in the coloring array marking which

1

vertex u you are currently checking as a neighbor of v, and put a similar marker in the adjacency
matrix at position (v, u). By marker, I mean add some extra states to the alphabet which encode
“white, marker here”, and so forth, so we can move the marker without losing the coloring data.
Zip back and forth between the two arrays, moving each marker forward one spot, and checking
whether we have found a contradiction yet.)

5. If the check in 4 fails, output NOT BIPARTITE.
6. Return to 2.

Problem 3 Let G be a graph where every vertex has even degree. An Eulerian orientation of G
is a way to direct the edges of G so that every vertex has in-degree equal to out-degree.

(a) Show that G has an Eulerian orientation.
Let H be a bipartite graph with equally many black and white vertices. A prefect matching of

H is a collection of edges which covers every vertex of H exactly once.
I did more of this in class than I mean to. Let G1, G2, . . . , Gr be the connected components of

G. Since each Gi has all vertices of even degree, each has an Eulerian tour, and each Gi has an
Eulerian orientation. Take these orientations on each component to orient G.

(b) Let G have vertices of degrees 2d1, 2d2, . . . , 2dm. Describe a (polynomial time) algorithm
which constructs a bipartite graph H with 2

∑
di vertices so that

(perfect matchings of H) = # (Eulerian orientations of G) ·
∏
i

(di)!

For each vertex v of degree d(v), create d(v) white vertices W (v, 1), W (v, 2), . . . , W (v, d(v)).
For each edge e (of which there are a total of

∑
di) create a new black vertex B(e). If e joins u

and v in G, join B(e) to W (u, 1), W (u, 2), . . . , W (u, d(u)), W (v, 1), . . . , W (v, d(v)).
We describe a map from perfect matchings of H to Eulerian orientations of G. Given any perfect

matching of H, if B(e) is matched to a vertex of the form W (u, i), orient e toward u. It is easy to
check that this gives an Eulerian orientation. For a given Eulerian orientation, in order to lift it to
a matching, at every vertex v, we must choose a bijection between the vertices W (v, 1), W (v, 2),
. . . and the d(v) edges directed into v; there are d(v)! ways to make such a choice.

