
Solution Set 5

Problem 1 Let G be a finite graph and let A be its adjacency matrix. Let d be the largest degree
of any vertex of G.

(a) Show that the eigenvalues of A lie in the interval [−d, d].
Let di be the degree of vertex vi.
We must show that A+ dId is positive definite and A− dId is negative definite. For the former,

consider any vector x = (x1, x2, . . . , xn). Then

xT (A+ dId)x = d
∑

x2i + 2
∑

(i,j) an edge

xixj =
∑

(d− di)x2i +
∑

(i,j) an edge

(xi + xj)
2 ≥ 0.

Similarly,

xT (A− dId)x = −d
∑

x2i + 2
∑

(i,j) an edge

xixj = −
∑

(d− di)x2i −
∑

(i,j) an edge

(xi − xj)2 ≤ 0.

(b) Give a simple criterion for when d is an eigenvalue of A.
We want to know when there is a nontrivial x in the kernel of A − dId. From the above, this

happens if and only if we can arrange for
∑

(di − d)x2i −
∑

(i,j) an edge(xi − xj)2 to be zero. From

the second sum, we see that such an x must be constant on every connected component of G. From
the first terms, we see that we must have di = d whenever xi is nonzero. Combining these, we see
that d is an eigenvalue of the adjacency matrix if and only if G has a connected component in
which every vertex has degree d.

(c) Give a simple criterion for when −d is an eigenvalue of A.

As in the last problem, we want
∑

(d− di)x2i +
∑

(i,j) an edge(xi + xj)
2 to be zero. This means

that d = di whenever xi is nonzero and, if xi and xj are joined by an edge, then xi = −xj . In other
words, −d is an eigenvalue of the adjacency matrix if and only if G has a connected bipartite
component where every vertex has degree d.

Problem 2 Let G be the Petersen graph and A it’s adjacency matrix. We showed in class that
A has eigenvalues 3, 1, 1, 1, 1, 1, −2, −2, −2, −2.

Let v be a vertex of G. Give a formula for the number of walks G of length k, starting and ending
at v. Hint: For k = 1, 2 and 3, you should get 0, 3 and 0.

The number of closed walks of length k is Tr(Ak) = 3k + 5 + 4 × (−2)k. Since the symmetry
group of the Petersen graph can take any vertex to any other, we divide by 10 to have our walk
start at a particular vertex:

1

10

(
3k + 4× (−2)k + 5

)
.

Problem 3 Let G be a finite graph with adjacency matrix A and eigenvalues λ1, λ2, . . . , λn.
(a) Show that λ21 + λ22 + · · · + λ2n is a nonnegative integer and give a combinatorial description

of it.
This is the trace of A2, so it is

∑
v∈G deg(v), or twice the number of edges of G.

(b) Show that λ31 +λ32 + · · ·+λ3n is a nonnegative integer and give a combinatorial description of
it.

This is the trace of A3, so it is the number of length 3 walks in G, or 6 times the number of
triangles.

(c) Suppose that G has n vertices and every vertex has degree d. Show that

λ41 + λ42 + · · ·+ λ4n − (nd+ nd(d− 1) + nd(d− 1))

is a nonnegative integer and give a combinatorial description of it. (The expression in parentheses
is deliberately not simplified as a hint.)



The sum λ41 + λ42 + · · · + λ4n is the number of closed walks of length 4. The other terms count
degenerate walks of various sorts: The quantity dn is the number of walks of the form vi → vj →
vi → vj → vi; the quantity nd(d− 1) is the number of walks of the form vi → vj → vk → vj → vi
with i 6= k; the quantity nd(d − 1) is the number of walks of the form vj → vi → vj → vk → vi
with i 6= k.

After subtracting these out, we are left with the number of closed walks of length 4 using 4
distinct vertices. Alternatively, 8 times the number of 4-cycles in G.

Problem 4(a) Let G be a finite graph. Let wk be the number of closed walks in G of length k
and let p be a prime number. Show that wp is divisible by p.

Group together walks which only differ by shifting their starting point, so v1 → v2 → v3 → · · · →
vp → v1, v2 → v3 → · · · → vp → v1 → v2 and so forth are grouped together. Since p is prime, and
G has no self loops, all these equivalence classes have size p.

(b) Give an example of a finite graph for which w4 is not divisible by 4.
If we group walks that are equivalent up to shift, we get lots of groups of size 4, plus some groups

of size 2. Specifically, for each edge (u, v), we get a group of size 2 containing u→ v → u→ v → u
and v → u→ v → u→ v. So any graph with an odd number of edges is an example.

(c) Let A be an n× n integer matrix and let p be a prime. Show that

Tr(Ap) ≡ Tr(A) mod p.

You will want Fermat’s Little Theorem, which says that ap ≡ a mod p for any integer a. (Hint:
Thinking about walks in graphs helps.)

As above, Tr(Ap) is the sum of ai1i2ai2i3 · · · aip−1ipaipi1 where the sum is over all closed walks
i1 → i2 → · · · ip → i1 in the complete graph. Grouping together walks which all cycles of each
other, the only terms which are not 0 mod p are the walks which stay at the same vertex the entire
time. So we get

Tr(Ap) =
∑
i

apii.

By Fermat’s Little Theorem, the right hand side is
∑

i aii = Tr(A).
(d) Find an integer matrix A and a prime p such that Ap 6≡ A mod p.
There are tons of examples; ( 1 1

0 1 ) works.

Problem 5 Let G be a finite graph with at least two vertices such that, for any two distinct
vertices u and v, there are exactly two paths of length 2 from u to v.

(a) Show that all vertices of G have the same degree.
Let x and y be two vertices of G with degrees d and e. First, suppose that x and y do not border

each other. Let x1, x2, . . . , xd be the neighbors of x and let y1, y2, . . . , ye be the neighbors of y.
Then, for every xi, there are two paths of length two from xi to y, so xi borders two of the yj .
Thus, the total number of edges which connect some xi to some yj is 2d. But, symmetrically, this
number is also 2e, so 2d = 2e and d = e.

Now suppose that x and y do border each other. Let x1, x2, . . . , xd−1 be the other neighbors of
x and let y1, y2, . . . , ye−1 be the other neighbors of y. There are two paths of length two from xi
to y. One of them is xi → x→ y. The other must be of the form xi → yj → y for some yj . So each
xi borders one yj . There are thus d − 1 edges which connect some xi to some yj . Symmetrically,
there are e− 1 such edges. So d− 1 = e− 1 and d = e.

Let d be this common degree and let n be the number of vertices of A.
(b) Give a formula for n in terms of d.
Fix a starting vertex v and consider all non-backtracking paths of length 2 starting at v. There

are d(d−1) of them. For each w 6= v, there are two such paths ending at w. So 2(n−1) = d(d−1),
or n = d(d− 1)/2 + 1.

(c) By analyzing the spectrum of A, show that there are only two possible values of d.



We have A2 = 2J + (d − 2). The eigenvalues of J are n = d(d − 1)/2 + 1, with multiplicity 1,
and 0, with multiplicity n − 1. So the eigenvalues of 2J + (d − 2) are d2, with multiplicity 1, and
d− 2, with multiplicity n− 1.

So the eigenvalues of A are d (with multiplicity 1) and ±
√
d− 2. Let k± be the number of times

that ±
√
d− 2 occurs. So d + k+

√
d− 2 − k−

√
d− 2 = 0. We deduce that

√
d− 2 is rational, say

d = m2 + 2. Then m2 + 2 + (k+ − k−)m = 0. So m divides 2 and m = 1 or 2. Correspondingly,
d = 3 or d = 6 and n = 4 or n = 16.

(d) Construct graphs achieving each of the values of d you found in the previous part.
For (d, n) = (3, 4), we must take the complete graph K4.
For (d, n) = (4, 16), there are two solutions. One is the graph whose vertices are ordered pairs

(x, y), with x and y ∈ {1, 2, 3, 4}, and an edge between (x, y) and (x′, y′) if either x = x′ or y = y′.
The other can be obtained by taking the triangular grid shown below, and gluing the sides of

the square to form a torus with 16 vertices, 48 edges and 32 triangles.

I have a case by case proof that these are the only options, but it is too ugly to write out; I’ll be
curious to see if some of you produce nicer ones.

Based on a problem from the 2012 Moscow Mathematical Olympiad.


